
POSDAO
Proof of Stake Decentralized Autonomous Organization

Authors: Igor Barinov, Vadim Arasev, Andreas Fackler, Vladimir Komendantskiy, Andrew Gross,
Alexander Kolotov, Daria Isakova

Abstract

In this paper we introduce POSDAO, a Proof of Stake (POS) algorithm implemented as a
decentralized autonomous organization (DAO). It is designed to provide a decentralized, fair,
and energy efficient consensus for public chains. The algorithm works as a set of smart
contracts written in Solidity. POSDAO is implemented with a general purpose BFT consensus
protocol such as Authority Round (AuRa) with a proposer node and probabilistic finality, or
Honey Badger BFT (HBBFT), leaderless and with instant finality. Validators are incentivized to
behave in the best interests of a network through a configurable reward structure. The algorithm
provides a Sybil control mechanism for managing a set of validators, distributing rewards, and
reporting and penalizing malicious validators. The authors provide a reference POSDAO
implementation, xDai POSDAO, which uses xDai as a stable transactional coin and a
representative ERC677 token (STAKE) as a staking token. The reference implementation
functions on an Ethereum 1.0 sidechain and utilizes the AuRa consensus protocol. Assets are
bridged between the Ethereum mainnet and the xDai POSDAO network using several instances
of the POA TokenBridge.

Table of Contents

POSDAO 1

Abstract 1

Table of Contents 1

1. Introduction 5
1.1 Proof of Stake model 6
1.2 Delegated Proof of Stake 6
1.3 Decentralized Autonomous Organization (DAO) 6
1.4 POSDAO consensus model 7

2. Terminology 9

v1.9 | 6/16/2021 1

3. Reward distribution 10
3.1 Configurable reward structure 11

3.1.1 Transaction fees 11
3.1.2 Bridge fees 11
3.1.3 Fixed block rewards 12

3.2 Three rules of reward distribution 12
3.3 Distribution examples 13

3.3.1 Pools receive an equal reward per block 13
3.3.2 Validator shares the reward with delegators proportionally within a pool. 14

3.3.2.1 Case with no delegators 14
3.3.2.2 Case with one delegator and one validator 15
3.3.2.3 Case with multiple delegators 15

3.3.3 Validator shares a reward with delegators with proportion 30% to 70% within a
pool. 16

3.3.3.1 Case with one delegator 16
3.3.3.2 Case with multiple delegators 17

4. Validator set formation 17
4.1 Network participants 18
4.2 Staking epochs 18
4.3 Becoming a candidate 18
4.4 Candidate pools 18
4.5 Staking and withdrawal to/from a pool 19
4.6 Moving stakes 20
4.7 Randomness when selecting a validator 20

5. POSDAO network initialization 20
5.1 Bridged network scenario 21

5.1.1 Bridge 1: ERC677-to-ERC677 bridge 22
5.1.1.1 ERC677-to-ERC677 bridge entrance and exit fees 23

5.1.2 Bridge 2: ERC20-to-Native bridge 25
5.1.2.1 ERC20-to-Native bridge entrance and exit fees 25

5.1.3 Bridge setup and initial validators 27
5.2 Initialization parameters 29

5.2.1 Recommendations 30

6. Rationale 30
6.1 Consensus Mechanisms 30

6.1.1 Consensus layer options 30
6.1.2 Delegated Proof of Stake (DPOS) 31

v1.9 | 6/16/2021 2

6.2 Reward Structure 31
6.2.1 Minimum candidate stake 31
6.2.2 Equal share of the block reward 31
6.2.3 Proportional reward distribution of 70/30% 31
6.2.4 Dual Token Environment 32

7. Misbehavior and consensus fault management 32
7.1 Long Range attack 33

Problem 33
Solution 33

7.2 Nothing at Stake attack 34
Problem 34
Solution 34

7.3 Fake Stake attack 34
Problem 34
Solution 35

7.4 Cloning attack 35
Problem 35
Solution 35

7.5 POSDAO implementation specific attacks 36
7.5.1 RANDAO attack 36

Problem 36
Solution 36

7.5.2 Exit from Bridge attack 37
Problem 37
Solution 37

7.5.3 Coordinated Validator Set attack 38
Problem 38
Solution 38

8. Future directions 38
8.1 Honey Badger BFT full implementation 38
8.2 Bridge governance development 38
8.3 Reward model analysis 38
8.4 Hypothecation 39

9. Reference implementation notes 39
9.1 POSDAO smart contracts 39
9.2 Implementation details 41

9.2.1 Network startup 41
9.2.2 Placing stakes in ERC677 tokens 42

v1.9 | 6/16/2021 3

9.2.2.1 POSDAO ERC677 staking tokens 42
9.2.2.2 Initial validator stakes 43
9.2.2.3 Candidate stakes 43
9.2.2.4 Delegator stakes 43
9.2.2.5 Staking window 43
9.2.2.6 Helpful StakingAuRa getters 44

9.2.3 New staking epoch, validator selection, and finalizing changes 44
9.2.4 Validator set changes and pending validator set 46
9.2.5 Random seed accumulation 46
9.2.6 Removing malicious validators 48
9.2.7 Block reward distribution 49

9.2.7.1 ERC20-to-Native bridge fee distribution 50
9.2.7.2 ERC20-to-Native bridge reward from Dai Savings Rate 50
9.2.7.3 ERC677-to-ERC677 or Native-to-ERC20 bridge fee distribution 50
9.2.7.4 Inflation distribution (when using ERC staking tokens) 51
9.2.7.5 Inflation distribution (when using native staking coins) 51

9.2.8 Withdrawing stakes 51
9.2.9 Moving stakes 52
9.2.10 Voluntary exit from a validator set 52
9.2.11 Unremovable validator 52
9.2.12 Zero gas price and service transactions 53
9.2.13 Claiming reward 53

9.3 OpenEthereum client for AuRa 54
9.4 xDai POSDAO network parameters 55

Appendix A: POSDAO Reward Distribution 57

Appendix B: DAI-to-xDai / ERC20-to-Native bridge example scenario 58

Appendix C: POSDAO / ERC677-to-ERC677 bridge example scenario 60

Appendix D: DPOS modeling 63
Additional network statistics 64

Appendix E: Honey Badger BFT (HBBFT) integration 65

References 66

Version Log 68

Note on the paper layout: This paper consists of two distinct parts. The first part (sections 1-8)
offers an overview of existing models, explains the algorithm’s reward structure, validator set
formation, rationale, and consensus fault management strategies. The second part (section 9)

v1.9 | 6/16/2021 4

describes the reference implementation in detail, with many overlapping concepts. Readers
interested in specific implementation details may want to skip to section 9.

1. Introduction
While Ethereum 2.0 (Serenity) will bring Proof of Stake Sybil control and many other innovations
to the Ethereum ecosystem, the completion date is currently unknown. Following completion,
Ethereum 1.0 will continue to provide a viable and usable network, requiring long term support
and optimization. The POSDAO (Proof of Stake Decentralized Autonomous Organization)
protocol provides an immediately available scalability solution for Ethereum 1.0, creating the
opportunity for staking and delegated staking, very fast transactions, and very low transactional
costs. POSDAO runs on a fully compatible EVM-based sidechain, allowing for mainnet
interoperability while providing greater efficiency, lower fees, configurability, and other benefits
relative to current EVM consensus implementations.

In addition to slow and costly transactions, there is increasing evidence that Nakamoto
consensus (also known as Proof of Work) models are not ecologically viable in the long term.
Bitcoin currently uses “at least 2.55 gigawatts of electricity”, with the potential to consume “7.67
gigawatts in the future”, comparable to the total usage of countries like “Austria (8.2
gigawatts)[1].” As a result, more blockchain networks are adopting Proof of Stake (POS) and
Delegated Proof of Stake (DPOS) protocol variants as consensus alternatives[2]. These
protocols are responsible for designating the network nodes that process transactions and
update the ledger in a distributed system. They have been shown to provide the requisite
security and consensus for a blockchain, and offer improved efficiency over current Nakamoto
implementations[3]. In POSDAO, the POS algorithm is implemented as a decentralized
autonomous organization (DAO).

Participants in POS protocols stake assets, in the form of tokens or coins, to protect the network
and achieve agreement regarding blockchain transactions. There are many projects within the
Ethereum ecosystem where project specific tokens are held by project supporters, however,
these assets have limited utility. By converting project specific tokens to DPOS staking tokens,
token holders can participate as validators or delegators in the consensus process on an
Ethereum-based sidechain. They earn rewards (either block rewards or transactional rewards)
based on their participation. This provides an opportunity for token holders to convert any
amount of current holdings into staking tokens, which in turn earn reward-based dividends.

While many POS and DPOS implementations are currently available, they often have set criteria
which determine their base functionality and limit their potential usage. The parameters in the
POSDAO chain are highly configurable. This includes the underlying consensus protocol, block
reward functionality, transaction rate, staking specifications, and other implementation details.
The reference implementation provides settings and parameters which can be changed
depending on the purpose of the chain and the needs of its users.

v1.9 | 6/16/2021 5

1.1 Proof of Stake model
Consensus algorithms provide an economic incentive for honest protocol execution and
decentralization. In a Proof of Stake (POS) model[4], individuals stake an amount of tokens in an
effort to be selected as a block producer (validator). Validators are chosen based on numerous
criteria; typically the amount of stake and a randomness beacon are used in the selection
process. In exchange for successful block creation, validators are rewarded with additional
tokens.

A main advantage of a POS Sybil resistant system is the reduced energy expenditure in
comparison to a Proof of Work (POW) model. Additionally, POS incentivizes validators to run
high-bandwidth nodes and backup nodes for redundancy, which improves network throughput.
POW, on the other hand, incentivizes the purchase of more mining hardware, which does not
improve the maximum throughput.

There are two major POS models: Chain-based proof of stake, which “[..] features a chain of
blocks and simulates mining by pseudorandomly assigning the right to create new blocks to
stakeholders, and Byzantine Fault Tolerant (BFT) proof of stake, where an existing BFT
consensus is repurposed for Sybil control and economic incentive models”[5]. POSDAO utilizes
smart contracts for the validator selection process. These validator sets then run the underlying
consensus protocol. It can be configured to use OpenEthereum's AuRa consensus engine[6] or
Honey Badger BFT[7].

1.2 Delegated Proof of Stake
Delegated Proof of Stake (DPOS)[8] extends the POS model to allow additional individuals to
stake their tokens on potential validators (candidates), without participating in block production
themselves. Candidates who collect a higher percentage of tokens have greater odds of
becoming validators on the network. Rewards are then divided amongst the validators and the
staking entities (delegators).

DPOS provides the opportunity for delegators to “vote” on potential validators by staking tokens
on them. Candidates are incentivized to maintain a good reputation in order to attract more
delegators and increase their chances of becoming validators. POSDAO is designed to support
a DPOS model.

1.3 Decentralized Autonomous Organization (DAO)
A DAO is a self-sustaining, virtual entity defined by “smart contracts that contain the assets and
encode the bylaws of an entire organization”[9]. All financial transactions, rules, and decisions
are enacted and stored on the blockchain, creating a transparent and verifiable record. Rules
are initially set forth in smart contracts, and members (participating token holders) interact

v1.9 | 6/16/2021 6

according to these regulations to further the goals of the organization. Organizational rules can
be modified through mechanisms contained in the on-chain contracts or through an off-chain
governance process, such as subjective resolution and/or software updates.

1.4 POSDAO consensus model
POSDAO consensus implements a layered POS model connected by smart contracts on a
public blockchain (see Figure 1 below). Sybil control and incentives exist in smart contracts
working within the EVM and the execution state is stored on a public chain implementing the
POSDAO consensus. The underlying BFT consensus exists on the network protocol level. This
model requires modifications to the BFT consensus algorithm implementations in the Ethereum
client to facilitate information exchange between smart contracts and the consensus layer. This
includes communication relays regarding consensus faults and validator set management. The
AuRa implementation is implemented and operational on the OpenEthereum client. It is also
operational on the Nethermind Client v1.10.71+, with plans to migrate to a Nethermind powered
network with the upcoming deprecation of OpenEthereum support. HBBFT may also be
implemented in a future release.

v1.9 | 6/16/2021 7

https://nethermind.io/
https://medium.com/openethereum/gnosis-joins-erigon-formerly-turbo-geth-to-release-next-gen-ethereum-client-c6708dd06dd

Figure 1: Interactions between participants and primary consensus contracts in POSDAO.

v1.9 | 6/16/2021 8

2. Terminology

Term Math notation Definition

Staking unit ∈1µ 𝑀
= {ETH, DAI, POA...}𝑀

A token denomination used by actors of the
algorithm for staking. Actors include candidates,
validators, and delegators.

Minimum
candidate
stake

𝑠𝑡
𝑚𝑖𝑛
𝐶 = 𝑎µ

number of staking𝑎 −
units

The minimum amount of staking units required to
participate as a candidate for a validator slot.

Candidate
stake

𝑠𝑡𝐶 = 𝑎µ

𝑠𝑡𝐶 ≥ 𝑠𝑡
𝑚𝑖𝑛
𝐶

number of staking𝑎 −
units

The amount of staking units a given candidate
has staked on itself. If the candidate is selected
as a validator, the candidate stake is referred to
as validator stake without changing the notation.

Minimum
delegator
stake

𝑠𝑡
𝑚𝑖𝑛
𝐷 = 𝑎µ

number of staking𝑎 −
units

The minimum amount of staking units required to
participate in a pool as a delegator.

Delegator
stake

𝑠𝑡
𝑖
𝐷 = 𝑎µ

𝑠𝑡
𝑖
𝐷 ≥ 𝑠𝑡

𝑚𝑖𝑛
𝐷

number of staking𝑎 −
units

The amount of staking units the -th delegator𝑖
contributed to a given pool.

Candidate An Ethereum address which deposited at least
the minimum candidate stake to form a new pool.

Delegator An Ethereum address that allocates staking units
to a candidate’s/validator’s pool. Delegators and
the candidate/validator together form liquidity of
the pool.

Pool 𝑃
𝑠𝑡

𝑃
𝑠𝑡

=
𝑖=1

𝑛

∑ 𝑠𝑡
𝑖
 𝐷 + 𝑠𝑡𝐶

The total sum of staking units allocated to a
candidate/validator. This includes all delegators’
staking units as well as units staked by the

v1.9 | 6/16/2021 9

candidate/validator. The proportion of stake is
used to determine pool reward distribution.

Validator A candidate selected by the algorithm to
participate in a validator set for a staking epoch.

Validator set The set of validators selected for a staking epoch
to keep consensus of a network. Each validator
represents the validator’s pool.

Initial
validators

The set of validators defined during network
initialization.

Staking epoch 𝑡 The time duration (in blocks for AuRa, time in
HBBFT) for which the validator set is selected.
For example this is set to 120992 for a one-week
timeframe with a 5 second block time (for AuRa).

Pool reward 𝑃
𝑟𝑤

𝑃
𝑟𝑤

= 𝐵𝑅 * 1
𝑗

 =
𝑖=1

𝑛

∑ 𝑟
𝑖
𝐷 + 𝑟𝑉

number of validators𝑗 −
n – number of delegators

validator’s reward𝑟𝑉 −

delegator’s reward𝑟𝐷 −

The block reward in reward tokens for a validator
and delegators within a pool. The distribution
between them is defined in 3. Reward
distribution.

Block reward 𝐵𝑅 The total number of reward tokens appropriated
per block (or per amount of time for consensus
algorithms like Honey Badger BFT). The BR is
distributed amongst all participating validator
pools.

Reward token 𝑇 An ERC677 or Native token used to reward
validators and delegators.

3. Reward distribution
Reward distribution is the primary incentivization mechanism of the algorithm. In this section, we
explain the reward distribution rules between validators and delegators within pools based on
their contribution amounts.

v1.9 | 6/16/2021 10

POSDAO provides the option to implement a dual token environment. This is not a requirement
of the algorithm, but allows the opportunity to explore various economic incentives. In the
reference implementation, the POSDAO ERC677 token is used for staking. It is also used to
provide token rewards from the ERC677-to-ERC677 bridge (entrance/exit fees), and block
rewards. A second token (a native stable coin) is used for transaction fees (paid to validators or
external contract only, not to delegators) and rewards from the ERC20-to-Native bridge
(entrance/exit fees). The POSDAO implementation can also be configured using a single token
where the network's native coin is used both for staking and rewards.

Block rewards can be configured according to the requirements of the implementation. In our
single token reference implementation, the block reward is paid via a 2.5% annual inflationary
measure applied to the native staking coin.

In our dual token implementation, an annual inflationary measure is applied only to the
POSDAO staking token according to the following formula:

newTokensPerStakingEpoch = totalStakeAmount * ratio / 4800

where:

● newTokensPerStakingEpoch is the number of tokens minted and distributed among
the pools during the current staking epoch;

● totalStakeAmount is the total sum of tokens staked on the current active validators
(doesn't include the total amount of staked tokens during the current staking epoch);

● ratio is an emission ratio which is set to 15 representing 15% Annual Percentage Rate
for staking token with a dual token implementation or 2.5 representing 2.5% APR for
native coins with a single token implementation.

Additional rewards may be implemented with transaction fees and entrance/exit fees (for
validators and their delegators) on the bridges (see 5.1).

3.1 Configurable reward structure
The following reward types may be implemented with the POSDAO algorithm.

3.1.1 Transaction fees
Each on-chain transaction is assessed a transaction (gas) fee. This fee is configurable, and the
default is very low. The validator that seals the block (in the AuRa implementation) collects any
transaction fees associated with that block. In HBBFT, fees will be split equally among the
validators. This reward is not distributed to the delegators in the pool, it is only awarded to
validators. While the initial implementation directs transaction fees to validators, transaction fees

v1.9 | 6/16/2021 11

may also be designated for other purposes. With the implementation of EIP-1559, the fee
structure will be updated and fees may be burned or re-allocated in another way.

3.1.2 Bridge fees
If a bridge is used in the implementation, bridge fees may be assessed when assets are
transferred between chains (see 5.1 for details). An entrance fee is charged when assets are
moved from the Ethereum mainnet to the sidechain, and an exit fee assessed when the asset is
moved back to the mainnet. The fees are distributed to validators and delegators based on their
staking ratios (see 3.2).

3.1.3 Fixed block rewards
The reward distribution function mints reward tokens (or native coins depending on the network
settings and bridge mode) for all active validators and their delegators. If a validator is removed
due to misbehavior, its pool is not included in the reward distribution.

To calculate block rewards, the total stake amount (calculated from the beginning of the staking
epoch) is multiplied by a constant (inflation rate) and distributed among validators and their
delegators. See 9.2.7 for more details based on our reference implementation.

Figure 2: In this example, transaction fees are awarded to the validator only, and bridge fees and block
rewards are distributed between the node validator and the associated delegators.

v1.9 | 6/16/2021 12

https://eips.ethereum.org/EIPS/eip-1559

3.2 Three rules of reward distribution
In order to maintain fairness and incentivize elected validators, reward distribution is calculated
according to the following rules:

1. Each pool within the validator set receives an equal share of the reward (if all validators
always produce blocks and don’t skip them) at the end of staking epoch.

2. Pool rewards are proportionally distributed between a validator and the staking
delegators, as long as the total delegators’ percentage of stake is below 70%*.

3. The validator is guaranteed to receive at least 30% of the pool reward. If the total
delegators’ stake exceeds 70%, the delegators’ rewards are adjusted accordingly and
the validator receives 30%*.
*Note: This parameter is configurable, and we will conduct statistical analysis to
determine its efficacy in our reference implementation. It may also be adjusted to a flat
percentage based on proportional staking amounts irregardless of validator/delegator
status.

See Appendix A for a detailed example which uses the 70/30 rule.

3.3 Distribution examples

3.3.1 Pools receive an equal reward per block

Let’s introduce a pool reward per block. We assume it is defined on network startup.

Block reward 1 reward token

If there is one validator in a validator set per a given staking epoch, that validator’s pool will
receive 100% of the block reward.

ID Pool reward

Validator A 100% of block reward

Let’s assume the minimum candidate stake is one staking token and the minimum delegation
stake is 0.01 staking tokens.

Minimum candidate stake 1 staking token

v1.9 | 6/16/2021 13

Minimum delegation stake 0.01 staking tokens

If there are two validators in a validator set per a given staking epoch, even if their pools have a

different amount of staking tokens , the pools will each receive 50% of the block(𝑃
𝑠𝑡 𝐴

≠ 𝑃
𝑠𝑡 𝐵

)

reward.

ID Number of staking tokens Pool reward

Validator A 1 50% of block reward

Validator B 2 50% of block reward

Note: shares will only be equal if every validator produces blocks continuously. If a validator
skips their blocks, their pool will receive proportionally less reward than other (continuously
working) validators. For example, if there are two validators in the validator set and one of them
produced 10 blocks, but another only 5 blocks, the first validator's pool will receive
10/(10+5)=66% of the total reward, and the second pool will receive the remaining 34%.

3.3.2 Validator shares the reward with delegators proportionally within a
pool.
When a share of the total amount staked by delegators is less than or equal to 70% of a pool,
the reward is distributed proportionally among participants.

𝑖=1

𝑛

∑ 𝑠𝑡
𝑖
𝐷

𝑃
𝑠𝑡

≤ 0. 7

𝑟
𝑖
𝐷 = 𝑃

𝑟𝑤
*

𝑠𝑡
𝑖
 𝐷

𝑃
𝑠𝑡

𝑟𝑉 = 𝑃
𝑟𝑤

*
𝑠𝑡 𝐶

𝑃
𝑠𝑡

3.3.2.1 Case with no delegators
A validator owns 100% of the pool reward.

Staking tokens Pool reward, %

v1.9 | 6/16/2021 14

Dist.1: Reward distribution
for a single validator without
delegators

1 100

Blue validator 1 100

3.3.2.2 Case with one delegator and one validator
The delegator stakes an amount less than 70% of the total amount staked within a pool. The
delegator shares the pool reward proportionally with the validator.

Staking tokens Pool reward, %

Dist.2: Reward distribution
for a single validator with a
single delegator when the
stake of the delegator is less
than 70% of a pool

1.25 100

Blue validator 1 80

Red delegator 0.25 20

3.3.2.3 Case with multiple delegators
In this case, the sum of all delegators’ stakes is less than 70% of the total amount staked within
a pool. The group shares the reward proportionally with the validator.

Staking tokens Pool reward, %

v1.9 | 6/16/2021 15

Dist.3: Pool reward distribution for a
single validator with multiple delegators
when the sum of all delegators’ stake
is less than 70% of a pool.

1.25 100

Blue validator 1 80

Red delegator 1 0.05 4

Green delegator 2 0.1 8

Yellow delegator 3 0.1 8

3.3.3 Validator shares a reward with delegators with proportion 30% to 70%
within a pool*.
*this proportion is configurable and may be changed to 20/80 or a flat rate which corresponds
directly to the amount staked.

When the total amount staked by delegators exceeds 70% of a pool, the delegators’ reward
share is capped at 70%.

𝑖=1

𝑛

∑ 𝑠𝑡
𝑖
𝐷

𝑃
𝑠𝑡

> 0. 7

The validator’s reward never drops below 30% within a pool. This ensures nodes are
incentivized to be validators themselves, rather than merely delegate.

𝑟
𝑖
𝐷 = 70% * 𝑃

𝑟𝑤
*

𝑠𝑡
𝑖
 𝐷

𝑖=1

𝑛

∑ 𝑠𝑡
𝑖
𝐷

𝑟𝑉 = 30% * 𝑃
𝑟𝑤

v1.9 | 6/16/2021 16

3.3.3.1 Case with one delegator
One delegator staked more than 70% of a pool. The pool reward of the validator remains at
30%. The delegator receives 70% of the pool reward.

Staking tokens Pool reward, %

Dist.4: Reward distribution
for a single validator with a
single delegator when the
stake of the delegator is more
than 70% of a pool

4 100

Blue validator 1 30

Red delegator 3 70

3.3.3.2 Case with multiple delegators

Multiple delegators staked amounts totaling more than 70% of a pool. The validator’s pool
reward will not drop below 30%. The delegators proportionally share the 70% pool reward.

Staking tokens Pool reward, %

Dist.5: Pool reward
distribution for a single
validator with multiple

6 100

v1.9 | 6/16/2021 17

delegators when the sum of
stakes of all delegators is
more than 70% of a pool

Blue validator 1 30

Red delegator 1 2 28

Yellow delegator 2 3 42

4. Validator set formation
Any address with the minimum required candidate stake can become a validator. When an
address calls the addPool contract function and meets the minimum required candidate stake,
it becomes a candidate and forms a new pool.

4.1 Network participants
The number of network participants is configurable and cannot exceed the values assigned to
the MAX_CANDIDATES and MAX_VALIDATORS parameters.

Any arbitrary address with at least DELEGATOR_MIN_STAKE tokens (ERC677) or native coins
(depending on network’s mode) can stake their tokens/coins and become a delegator.

4.2 Staking epochs
The network's operation is divided into staking epochs (STAKING_EPOCH_PERIOD - this value
is configurable, the default is a one week cycle). A new staking epoch begins immediately
following the termination of the previous epoch.

At the beginning of each staking epoch, the algorithm selects a new validator set from the
current list of candidates and creates a snapshot of the current state of the validators' pools. If
there are fewer than MAX_VALIDATORS+1 candidates, every candidate becomes a validator.
The snapshot is used to calculate the reward amount for validators and delegators when they
claim the reward.

4.3 Becoming a candidate
An arbitrary address A in the network launches its node and puts at least the minimum stake in
ERC677 staking tokens or native coins (CANDIDATE_MIN_STAKE) on its own address.
Address A then specifies address B as the mining address using the addPool function. A new
active pool is created for address A, and this account becomes a candidate account.

v1.9 | 6/16/2021 18

● Address A is the staking address used to collect rewards and place stakes into their own
pool.

● Address B (the mining address) is used by the validator's node to sign blocks, participate
in the randomness beacon (see 4.7), and report on malicious validators. This address is
defined in the engine_signer config option of validator’s OpenEthereum node.

4.4 Candidate pools
At the beginning of each staking epoch, the algorithm selects active candidate pools to
participate as validators in the next validator set. Inactive pools are ignored.

If a candidate withdraws all of their tokens/coins from their pool, the pool becomes inactive and
does not take part in the next validator selection process. The candidate can either fully
withdraw their tokens/coins and remove themselves as a pool, or partially remove their
tokens/coins (provided that they leave CANDIDATE_MIN_STAKE) and participate in later
staking epochs.

4.5 Staking and withdrawal to/from a pool
Participants can stake or withdraw their tokens/coins to or from pools during the majority of a
staking epoch. The exception is a defined period at the end of each epoch
(STAKE_WITHDRAW_DISALLOW_PERIOD). This measure prevents stake manipulation based
on the random seed value generated at the very end of the epoch (see 4.7).

● The total stake amount of a candidate or validator on their own pool cannot be less than
CANDIDATE_MIN_STAKE.

● The total stake amount of a delegator on any pool cannot be less than
DELEGATOR_MIN_STAKE.

The minimum candidate stake is relatively large, encouraging institutional investors to become
candidates and validators. This large stake creates additional incentives for candidates to
protect their nodes and prevent DoS attacks. However, DoS attacks on individual validator
nodes are still possible. Part of the validator’s job is to defend against such attacks by using
ISPs that provide DoS protection.

Additional token staking or withdrawal to/from a pool during the current staking epoch (and
thereby changing the size of the pool) does not impact the current pool reward. The reward is
determined based on the pool's state at the moment the staking epoch begins (see 4.2).
However, these changes will impact validator selection probability for the following staking
epoch.

v1.9 | 6/16/2021 19

A participant cannot withdraw their tokens/coins from an active validator's pool unless the
amount was staked during the current staking epoch (this amount hasn’t been allotted as a
stake yet, so it can be withdrawn). Tokens/coins can be withdrawn from a candidate's pool at
any time (because the candidate is not a validator).

If a participant (delegator or validator) wants to leave an active validator's pool or reduce their
staked amount, they can schedule a withdrawal from the pool. The selected amount can be
claimed after the current staking epoch is complete.

If a validator wants to terminate their validator status on the next staking epoch, they can
schedule a withdrawal of their staked amount or call the contract’s removeMyPool function (in
this case the pool becomes inactive and won't be selected by the algorithm at the beginning of
the next staking epoch).

4.6 Moving stakes
A participant (delegator or candidate) can move their full or partial stake amount from one pool
to another without withdrawing the amount from the contract. Such a move is subject to the
same withdrawal rules described above.

4.7 Randomness when selecting a validator
The protocol implements a random number generator similar to RANDAO, which is used to
randomly select a set of validators from the group of candidates at the start of each staking
epoch. Candidates with a larger pool have a higher probability of selection to a validator set for
each staking epoch (candidates with higher stakes are probabilistically selected as validators for
more staking epochs).

Note: random selection is not applicable if there are 19 or fewer candidates/validators.

v1.9 | 6/16/2021 20

https://github.com/randao/randao

Figure 3: Validator set selection is determined by the validator/candidate pool size and a random value.

5. POSDAO network initialization
POSDAO smart contracts can be initialized either in the genesis block or in an arbitrary block on
an already existing network. In the case of genesis initialization, the contracts’ pre-configured
parameters are included in the chain specification bytecode, and the set of initial validators is
also defined in these parameters.

If the network is initiated from the genesis block, all of the addresses in the network (including
initial validators) have zero balances. There are no pre-initialized stakes for initial validators, so
their pools are also empty.

POSDAO may be configured to run as a stand alone blockchain. It can also run using a bridge
or bridges which connect to one or more other networks. This bridged scenario is used in the
reference implementation and described below.

5.1 Bridged network scenario
The POA TokenBridge is used to connect Ethereum chain instances, allowing users to transfer
assets between chains. In the reference implementation, two POA TokenBridge instances
connect the POSDAO sidechain network to the Ethereum mainnet.

Both bridges have their own validator sets which are not bound with the consensus validator set
in the POSDAO network. Bridge validators are responsible for secure token transfer between
chains, and they do not receive any reward for this service.

v1.9 | 6/16/2021 21

Figure 4: Reference implementation bridges between the Ethereum mainnet and the xDai POSDAO
network.

5.1.1 Bridge 1: ERC677-to-ERC677 bridge
The first bridge instance operates in the ERC677-to-ERC677 mode, connecting the POSDAO
network with the Ethereum mainnet. This allows participants to bridge their staking tokens
(POSDAO ERC677 tokens in the reference implementation) from the mainnet to the POSDAO
network (and move them back from POSDAO to mainnet when needed). See Appendix C for an
example scenario.

v1.9 | 6/16/2021 22

Figure 5: Token transfer between chains using the ERC677-to-ERC677 bridge. Note the ERC677 is an
ERC20 extension which allows for easy transfer operations.

5.1.1.1 ERC677-to-ERC677 bridge entrance and exit fees
Entrance and exit fees are assessed when tokens are moved between the two networks. These
funds are distributed to validators’ pools to provide staking incentives. The values are
configurable (see the BRIDGE_ENTRANCE_FEE and BRIDGE_EXIT_FEE constants in 9.4), in
this example it is set to 1% of the total bridge transaction token value.

v1.9 | 6/16/2021 23

Figure 6-7: Bridge entrance and exit fees are distributed to active validator pools.

v1.9 | 6/16/2021 24

5.1.2 Bridge 2: ERC20-to-Native bridge
The second bridge instance operates using an ERC20-to-Native mode. In this scenario,
participants bridge their ERC20 tokens from the Ethereum mainnet to the POSDAO enabled
sidechain (and move the coins back to mainnet as needed). In the reference implementation we
use DAI as the ERC20 token and xDai as the Native token.

Figure 8: Token transfer between chains using the ERC20-to-Native bridge.

5.1.2.1 ERC20-to-Native bridge entrance and exit fees
Entrance and exit fees are also assessed when tokens are locked/unlocked and minted/burned
between the two networks. These funds are also distributed to validators’ pools to provide
staking incentives. The value is configurable, in this example it is set to 1% of the token-coin
transfer amount. See Appendix B for an example scenario.

v1.9 | 6/16/2021 25

Figure 9-10: Bridge entrance and exit fees are distributed to active validator pools.

v1.9 | 6/16/2021 26

5.1.3 Bridge setup and initial validators
After the POSDAO network is started, the ERC677-to-ERC677 bridge is connected and
initialized. Once the bridge is connected, the initial set of consensus validators (defined in the
ValidatorSetAuRa smart contract) can bridge their POSDAO ERC677 tokens from the
Ethereum mainnet to the POSDAO network and place stakes into their own pools.

Because the validators do not have native coins (xDai in our example implementation) when the
network starts from genesis, they can make service transactions to the POSDAO contracts
using zero gas. The validators can make unlimited service transactions but only within the
scope of the consensus contracts. The TxPermission smart contract protects against
possible spam sent from a validator. Figure 11 shows an example network initialization.

If an initial staking epoch ends and there are no candidates (none of the initial validators made a
stake into their pool), the initial validator set is retained for the following staking epoch. However,
if at least one candidate appears (the address which added a stake to its pool), any initial
validators with empty pools are removed from the set, and the candidate becomes a validator
on the new staking epoch. Thus, if an initial validator wants to keep their seat (and still has no
staked tokens) after the initial staking epoch, they must place a stake into their own pool.

After the bridge is connected, individuals can bridge their POSDAO tokens and become
candidates in the POSDAO network. Figure 12 illustrates the various possible interactions from
a candidate’s address.

If the number of candidates is greater than MAX_VALIDATORS at the beginning of new staking
epoch, the validators are chosen randomly (using the randomness beacon) from the set of
candidates: the larger the candidate’s pool, the higher probability the candidate has of becoming
a validator.

v1.9 | 6/16/2021 27

Figure 11: Initialization of three initial validators and one candidate when starting from genesis (random is
not used here because the number of initial validators + candidates 19).≤

v1.9 | 6/16/2021 28

Figure 12: Candidate interactions from a single Ethereum address.

5.2 Initialization parameters
When a new network starts the initial validator set is populated.

Example initial parameters at network start:

Number of candidates 30

Number of validators 4

Number of delegators 0

Initial validator 1 (mining address) 0x...

Initial validator 1 (staking address) 0x...

Initial validator 2 (mining address) 0x...

v1.9 | 6/16/2021 29

Initial validator 2 (staking address) 0x...

Initial validator 3 (mining address) 0x...

Initial validator 3 (staking address) 0x...

Initial validator 4 (mining address) 0x...

Initial validator 4 (staking address) 0x...

Initial owner 0x...

In addition to the initial validators, an owner deploys the bridge contracts and has the ability to
upgrade the bridge and consensus contracts when required (for example if bugs are found or
the code needs to be modified). The owner should be a MultiSig smart contract which requires a
trusted setup. The details of this setup can vary depending on the nature of the network. Future
implementations may include a voting mechanism to allow validators the ability to vote on
upgrades. This would alleviate the need for the owner contract.

5.2.1 Recommendations
When configuring the number of validators, the underlying consensus algorithm should be taken
into account. For example, both our AuRa variant and HBBFT can tolerate up to and excluding
one third of the validators being faulty. This means that 19 validators are more secure than 20,
because in both cases, up to 6 faulty ones can be tolerated, but 7 out of 20 being faulty is more
likely than 7 out of 19. In general, for these consensus algorithms, the number should be of the
form 3 f + 1, e.g. 10, 13, 16 or 19.

We also recommend setting the number of candidates much higher than the number of
validators. This way, the number of possible validator sets is extremely high, and an attacker
won’t be able to simply wait for a specific set to occur, where their nodes have a majority.

6. Rationale

6.1 Consensus Mechanisms

6.1.1 Consensus layer options
POSDAO is compatible with a number of consensus algorithms. Chains may choose the
underlying algorithm that best suits their use cases and users. For example, AuRa provides a
consistent block rate whereas Honey Badger BFT produces varying block rates based on
network performance. One of these variants may be advantageous based on the purpose of the

v1.9 | 6/16/2021 30

network. Note that the AuRa implementation will be completed first, with HBBFT planned for a
future release.

6.1.2 Delegated Proof of Stake (DPOS)
DPOS is known to provide a high level of scalability at the cost of limiting the number of
validators on the network. While this creates a measure of centralization, researchers have
argued that “a Byzantine quorum system of size 20 could achieve better decentralization than
proof-of-work mining at a much lower resource cost.[19]” Block production is distributed equally
among the preset number of elected validators, rather than concentrated among a few mining
pools. Transactions can be processed quickly and efficiently, creating a highly scalable solution.

6.2 Reward Structure

6.2.1 Minimum candidate stake
The minimum candidate stake discourages the potential centralization of candidate seats,
where individuals may attempt to register many candidate nodes and thus control a large
percentage of validator sets. A high minimum candidate stake also deters a malicious set of
validators from attempting a coordinated validator set attack. This value is configurable based
on the network purpose and size (see 9.4 for reference implementation parameters).

6.2.2 Equal share of the block reward
Each validator pool within a validator set receives an equal share of the block reward*. While a
higher stake impacts the odds of a candidate pool becoming a validator pool, each validator
pool receives the same reward. This creates parity among the validators participating in each
staking epoch.

*Note: shares will only be equal if every validator produces blocks continuously. If a validator
skips blocks, their pool will receive proportionally less reward than other (continuously working)
validators. For example, if there are two validators in the validator set and one of them produced
10 blocks, but another only 5 blocks, the first validator's pool will receive 10/(10+5)=66% of the
total reward, and the second pool will receive the remaining 34%.

6.2.3 Proportional reward distribution of 70/30%*
The 70/30 distribution ratio is a common revenue sharing heuristic. It is a configurable option
that can be changed during or following POSDAO deployment. When set at the initial value,
delegators receive block rewards within their validator pool(s) up to 70% of the total pool value,
incentivizing delegators to quickly fund candidate pools they believe should be validators.

Once the 70% mark is reached, additional stake returns a proportionally smaller amount. At this
point, delegators may choose to fund additional candidate pools, increasing the number and

v1.9 | 6/16/2021 31

diversity of potential candidates, or stake additional tokens into the current pool, increasing the
probability of a candidate pool becoming a validator pool in the next staking epoch.

When the ratio is set to 70/30, a validator never receives less than 30% of the pool reward.
Validators are responsible for running a node and a reward baseline prevents a situation where
delegators can claim an overwhelming percentage of the reward. Once a pool reaches the
70/30 threshold, a validator may choose to increase their stake to attract additional delegator
funds or to increase their position on the leaderboard. Since reputation is a valuable commodity,
successful validator sets (those with a high stake, high transactional throughput, and consistent
node uptime) will continue to attract stake from delegators.

*After analysis of current reward collection, the reference implementation was modified
06/15/2021 to a straight proportional allocation of rewards to encourage additional delegators to
join the protocol.

6.2.4 Dual Token Environment
The POSDAO implementation provides an opportunity to experiment with different
incentivization constructs. Organizations may choose to use a single token/coin for staking,
transactions, and rewards, or separate tokens for transactions and staking. In the reference
implementation, we describe usage for a single token as well as a dual token environment.

In the dual token implementation we use a stable native coin (xDai, which is pegged to DAI on
the mainnet) for transactional purposes. A stable currency allows users to predict fees and
conduct transactions where prices will not fluctuate by large margins.

For staking purposes, we use a token whose price is determined by the market. While there is
more volatility with this token, it is not a transaction-based asset. Like other tokens, the price is
determined by supply and demand in the Ethereum ecosystem. To provide block rewards, the
POSDAO staking token STAKE is subject to a configurable annual inflation rate on the
sidechain (see 3. Reward distribution). This block reward provides additional incentives for
validators and delegators to continue staking.

7. Misbehavior and consensus fault management
In this section we review existing attacks on consensus algorithms and provide our solutions to
avoid or mitigate them.

Although POSDAO is a robust algorithm designed to withstand attacks and misbehavior, there
are circumstances where the protocol (as well as many other protocols) is susceptible to
influence by an alliance of bad actors. The amount of exposure is affected by the underlying
consensus algorithm.

v1.9 | 6/16/2021 32

Network Stall: Colluding validators can temporarily or indefinitely delay network messaging,
resulting in a stalled network. This may also happen accidentally if many validator nodes crash
or disconnect in parallel. With the modified AuRa consensus, the network may stall if 33% or
more validator nodes are impacted (because the modified AuRa requires at least 67% of
validators signatures). With Honey Badger BFT, 33% or more faulty nodes may cause network
stalls.

Majority Collusion: The protocol cannot protect against a majority of colluding validators. In
both Honey Badger BFT and AuRa, 67% or more of colluding validators can alter the entire
protocol by forking the chain, sealing erroneous blocks, double-spending, or re-electing
themselves as validators.

7.1 Long Range attack

Problem
An adversary creates an alternate chain (branch) starting from the genesis block. The branch
contains a different historical record of transactions and can be maintained locally. Using various
techniques, block production can be accelerated on the local branch to create a longer chain
than the main (honest) chain. At this point, the branch can be made public, overtaking the
honest chain as the ledger of record.

Longer branches may be created in several ways: forging time stamps, gaining access to former
validator’s keys, or collusion among former validators to quickly populate the branch (costless
simulation[4]), or stake bleeding[10], where a malicious validator slows the honest chain by failing
to validate blocks while simultaneously increasing stake on the alternate branch. When this
attack is successful, an adversary can post a transaction to the honest chain, wait for
confirmation, then present the longer branch to invalidate the previously confirmed transaction.

Solution
This issue is addressed on two levels.

First, the underlying consensus mechanism must prevent forks. Both choices we recommend do
this:

● AuRa considers blocks to be final as soon as half the validators have signed them. In our
modified AuRa implementation no more than 2*MAX_VALIDATORS/3 blocks can be
reverted at all. In our reference implementation that means all but the last 13 blocks will
never be changed.

● Honey Badger BFT has instant finality, i.e. no block can ever be reverted.

Second, mechanisms are needed to detect if an attacker gained control over a supermajority of
some past set of validators and created a fork starting from that point. This is best solved

v1.9 | 6/16/2021 33

https://wiki.parity.io/Aura.html

through communication and social consensus outside the protocol itself. If multiple trusted
sources occasionally publish the latest block’s hash, it is easy to discern the correct chain from
a forged one, just like the common genesis block allows nodes to reject otherwise well-formed
blockchains that start with a different one. A possible solution is "weak subjectivity" -
OpenEthereum provides the forkBlock and forkCanonHash fields in the spec json file to allow
for checkpointing.

7.2 Nothing at Stake attack

Problem
In the event of a fork in the chain, either due to simultaneous block production or malicious
intervention, validators may choose to continue generating blocks on both chains, thus
collecting block rewards on both chains without penalty. In fact, “the optimal strategy for any
miner (validator) is to mine on every chain, so that the miner gets their reward no matter which
fork wins[11].” This attack reduces efficiency by slowing down consensus time. Moreover, it
results in blockchain forks which weaken the ability of the blockchain to resolve double spending
attacks and other threats[12].

Solution
This, too, depends on the underlying consensus algorithm’s ability to prevent forks:

● OpenEthereum’s AuRa implementation includes a mechanism to report validators that
propose more than one block with the same number. In other words: mining on a fork
does result in a penalty on the main chain, so there is something at stake in that
scenario.

● With Honey Badger BFT, it is impossible to create a fork in the first place, unless more
than two-thirds of the validators collude. In addition, the authors’ implementation detects
and reports misbehaving nodes.

7.3 Fake Stake attack

Problem
In POSv3 (Bitcoin-based) networks, headers and blocks are sent as separate data structures
and committed to storage before all validation checks are complete. These checks are sufficient
in Proof of Work implementations, however in Proof of Stake implementations several
vulnerabilities are created[13]. An attacker can flood a node with either fake block headers or fake
blocks filled with arbitrary values. The RAM (headers) or disk space (blocks) is filled before
validation checks are run, and the node is rendered unusable. A variation of this attack, called a
“spent stake attack[14],” impacts pre-POSv3 networks that utilize Unspent Transaction Outputs
(UTXOs) to record transactions. In this case, an attacker can amplify their apparent stake
because validation checks do not differentiate between spent and unspent UTXOs. With this

v1.9 | 6/16/2021 34

https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity/
https://wiki.parity.io/Chain-specification.html
https://github.com/openethereum/openethereum/blob/a3e39c9858c088791b07bfd5ba3b7f9c8e80f179/ethcore/src/engines/authority_round/mod.rs#L1251
https://docs.rs/hbbft/0.1.0/hbbft/struct.Fault.html
https://docs.rs/hbbft/0.1.0/hbbft/struct.Fault.html

apparent stake, the attacker can mine POS blocks at a past time and then use these invalid
blocks to overwhelm a node’s disk space.

Solution
In POSDAO, stake is not used directly to produce a block. Instead, the stake makes it more
likely to be selected as a validator, and validators take part in an underlying consensus protocol
that produces blocks independent of the stakes. Depending on that protocol, block headers can
actually be validated very quickly: In AuRa the header is the step number and the signature by
the block’s proposer, and in Honey Badger BFT it is a threshold signature.

7.4 Cloning attack

Problem

The default OpenEthereum AuRa protocol is vulnerable to an attack[15] where a malicious
validator may clone their node (create 2 or more instances of the same validator with the same
public/private key pair), create a network partition (for example by delaying messages[16]), and
then use these cloned nodes on both sides of the partition. Because AuRa requires 1/2 of the
validators to be honest, using the cloned nodes gives the illusion to the block validators on each
partition that their group contains an honest majority.

Once the blockchain is divided, the attacker issues conflicting transactions to each group,
creating a double-spend scenario. The attacker waits for the transactions to be committed, then
signs an additional block on one of the partitions (whichever one the attacker wants to
preserve). This ensures the partition with this additional block becomes the longest chain (it has
the greatest height) and it is accepted by the remaining nodes as the canonical chain. The other
partition disappears, along with the transactions that were already accepted there.

Solution
Increasing the required number of signatures to 2/3 of validators rather than 1/2 of validators in
the AuRa implementation is sufficient to protect against this type of attack. As long as the
number of malicious validators is less than 1/3 of the total, the modified algorithm can guarantee
safety, and liveness is still preserved (although block times may be impacted slightly in the event
of a network partition). We have modified the AuRa protocol to utilize a 2/3 majority in order to
protect against a cloning attack.

v1.9 | 6/16/2021 35

https://github.com/openethereum/openethereum/pull/10909

7.5 POSDAO implementation specific attacks

7.5.1 RANDAO attack

Problem
The POSDAO implementation requires a reliable source of randomness to manage validator
sets. For AuRa we use the same algorithm as RANDAO [17], a widely used decentralized random
number generator. In a “look-ahead” attack scenario, an attacker exploits the RANDAO reveal
functionality by skipping block production. In order to be viable, this type of attack typically
requires collusion or control of multiple nodes and a willingness to forfeit the block reward.
When an attacker skips block validation, they can use the revealed information to pre-compute
the possible outcomes of “(possibly many) reveal strategies…and thus may anticipate the
effects of their contribution to the process and bias the generated random number to their
advantage[18].”

Solution
POSDAO contracts know whether a validator revealed their secret or not. If the validator didn't
reveal more than 55 times per staking epoch (this value is calculated based on the
STAKE_WITHDRAW_DISALLOW_PERIOD and COLLECTION_ROUND_LENGTH constants),
they are treated as malicious at the last block of that epoch and are removed by the algorithm
from the list of active pools. In this case, the validator and all their delegators are marked as
banned for the next 90 days (BAN_PERIOD), and they cannot withdraw their stakes from the
banned pool during that period. The banned pool cannot participate in the following staking
epochs for 90 days.

This limit of 55 allowed skips per staking epoch is to avoid punishing validators for temporary
outages. However, it also allows malicious validators to influence the outcome by faking such an
outage. This tradeoff avoids sometimes banning honest validators with connection problems at
the cost of making the random numbers less secure. When the numbers are used for high-value
applications (e.g. a casino game with high stakes), the limit should likely be 0, and the validators
should be expected to run multiple (backup) nodes or take other measures to prevent any
outages.

If a validator decides not to reveal their secret on the last reveal round of a staking epoch (to
influence the outcome), they are treated as malicious. It is the validator’s responsibility to ensure
their node is functional and connected during the final blocks of a staking epoch. They will be
removed even if they have merely lost their connection during this phase.

We recommend validators run two separate nodes simultaneously with different internet
connections to ensure reliability: a primary node with the engine_signer option and a

v1.9 | 6/16/2021 36

secondary node without that option but with a guard script which sets that option for the
secondary node dynamically when the first node goes offline. Since running nodes in the
unsecured cloud is not recommended (for security reasons), each validator should have nodes
in multiple secured data centers.

During the last 6 hours (STAKE_WITHDRAW_DISALLOW_PERIOD) of a staking epoch (this
duration is configurable), no one can stake or withdraw, preventing any possible influence to the
outcome.

The only possible attack is if a validator chooses not to reveal the secret at the end of the
staking epoch. This results in a freeze of the validator’s stakes (and all delegators that
delegated stake to them) and a ban from participation for 90 days (BAN_PERIOD).

7.5.2 Exit from Bridge attack

Problem
To achieve interoperability with Ethereum, multiple bridge instances can connect the POSDAO
chain to the Ethereum mainnet (see 5.1 for details). Validators on the bridge are responsible for
locking assets on one side of the bridge and minting assets on another. These operations
require multiple signatures from a number of validators before they are performed. The bridge
validators are distinct from validators on the POSDAO chain, and each bridge instance requires
a predetermined set of validators (they may be the same or separate for each bridge).

A colluding majority of bridge validators (either malicious or compromised nodes) could
commandeer the bridge contracts and mint assets without the corresponding locked assets.
This would create tokens or coins which are not backed by real assets. A colluding majority
could also unlock assets on the other side of the bridge and drain the locked funds.

Solution
Separate from the POSDAO consensus validators, the bridge validators are known individuals
who stake their reputations to secure the bridge contracts. These individuals (typically
organizations) are community participants who agree to take on the responsibilities of managing
the bridge. The bridge validation set does not rotate on a regular basis, although validators may
be added or removed through a governance process. In addition, there are daily limits which
safeguard against unchecked asset creation, destruction, or transfer. If a limit is exceeded, any
transaction which requests to relay assets will fail.

v1.9 | 6/16/2021 37

7.5.3 Coordinated Validator Set attack

Problem
A colluding set of malicious validators (greater than 67% of the set) could subvert the network
by deploying new POSDAO contracts, changing the spec.json on their nodes, and then
restarting their nodes. The new spec.json file would contain a new block number in
engine.authorityRound.params.validators.multi (see
https://github.com/poanetwork/poa-chain-spec/blob/dai/spec.json). This would create a hard
fork, and the validators would control the code of the contracts.

Solution
As mentioned in the introduction of section 7, the protocol itself cannot protect against a majority
of colluding validators. However, increasing the CANDIDATE_MIN_STAKE parameter greatly
reduces the feasibility of this attack, making it extremely expensive for a conspiring group to
attempt. By increasing the value of this constant, the summary costs for a group are vastly
increased, discouraging any efforts to coordinate a malicious takeover.

8. Future directions

8.1 Honey Badger BFT full implementation
While the POSDAO algorithm is configurable to allow for different consensus mechanisms,
AuRa consensus is currently the only method fully supported by the protocol. We are working to
integrate HoneyBadger BFT as an alternative pluggable consensus. See Appendix E for
additional details.

8.2 Bridge governance development
In a bridged scenario, bridge validators are granted multisig owner status. They are trusted
during launch, and in the reference implementation are known, credible organizations. We will
explore bridge governance strategies to promote further decentralization for future releases.

Update 06/16/2021: Bridge Governance Board now in place.

8.3 Reward model analysis
Highly configurable incentivization structures allow us to model different reward scenarios (see
Appendix D). We will continue to test additional designs to fine-tune and explore the impact of
different reward models.

v1.9 | 6/16/2021 38

https://github.com/poanetwork/poa-chain-spec/blob/dai/spec.json
https://www.xdaichain.com/for-users/governance#bridge-governance-board

8.4 Hypothecation
It is possible to allocate tokens “locked” in the bridge as collateral for loans through
cryptocurrency lending services such as Compound. Guarantees must be in place so that any
locked funds are returned on request, whenever a bridge transfer is initiated. We will explore
this methodology to ensure it is sound, and analyze the costs/benefits of this novel approach for
providing additional staking incentives.

9. Reference implementation notes

9.1 POSDAO smart contracts
POSDAO is configured using a set of Solidity smart contracts to implement consensus, rewards,
and staking logic.

● BlockRewardAuRa: generates and distributes rewards according to the logic and
formulas described in section 3. Main features include:

○ distributes the entrance/exit fees from the ERC677-to-ERC677,
Native-to-ERC20, and/or ERC20-to-Native bridges among validators and their
delegators;

○ distributes staking tokens/coins according to defined inflation rate among
validators and their delegators;

○ mints native coins needed for the ERC20-to-Native bridge;
○ makes a snapshot of the validators at the beginning of each staking epoch. The

snapshot is used by StakingAuRa.claimReward function.

● Certifier: allows validators to use a zero gas price for their service transactions (see
the OpenEthereum Wiki for more info). The following functions are considered service
transactions:

○ ValidatorSetAuRa.emitInitiateChange
○ ValidatorSetAuRa.reportMalicious
○ RandomAura.commitHash
○ RandomAura.revealNumber

● InitializerAuRa: used once on network startup and then destroyed. This contract is
needed for initializing upgradeable contracts when starting from genesis. The bytecode
of this contract is written by the scripts/make_spec.js script into spec.json along with
other contracts.

v1.9 | 6/16/2021 39

https://github.com/poanetwork/posdao-contracts
https://openethereum.github.io/Permissioning.html#gas-price
https://github.com/poanetwork/posdao-contracts/blob/master/scripts/make_spec.js

● RandomAuRa: generates and stores random numbers in a RANDAO manner (and
controls when they are revealed by AuRa validators). Random numbers are used to form
a new validator set at the beginning of each staking epoch by the ValidatorSetAuRa
contract. Key functions include:

○ commitHash and revealNumber. These can only be called by the validator's
node when generating and revealing their secret number (see RANDAO to
understand the principle). Each validator node must call these functions once per
“collection round.” This creates a random seed which is used by the
ValidatorSetAuRa contract;

○ onFinishCollectRound. This function is automatically called by the
BlockRewardAuRa contract at the end of each “collection round.” It controls
the reveal phase for validator nodes and punishes validators when they don’t
reveal (see 7.5.1 for more details on the banning protocol).

● Registry: stores human-readable keys associated with addresses, like DNS
information (see the OpenEthereum Wiki). This contract is primarily required to store the
address of the Certifier contract (see the OpenEthereum Wiki for details).

● StakingAuRa: contains staking logic including:
○ creating, storing, and removing pools by candidates and validators;
○ staking tokens or native coins by participants (delegators, candidates, or

validators) into the pools;
○ storing participants’ stakes;
○ withdrawing tokens/coins by participants from the pools;
○ withdrawing participant’s reward;
○ moving tokens/coins between pools by participants.

● TxPermission: controls the use of a zero gas price by validators in service
transactions, protecting the network against “transaction spamming” by malicious
validators. The protection logic is declared in the allowedTxTypes function.

● TxPriority: manages and stores the transactions priority list used by the Ethereum
client. See https://github.com/NethermindEth/nethermind/issues/2300 for description.

● ValidatorSetAuRa: stores the current validator set and contains the logic for
choosing new validators at the beginning of each staking epoch. The logic uses a
random seed generated and stored by the RandomAuRa contract. Also,
ValidatorSetAuRa along with the modified OpenEthereum client is responsible for
discovering and removing malicious validators. This contract is based on
ReportingValidatorSet described in the OpenEthereum Wiki.

Note that HBBFT contract implementations are not fully finished, and they are not listed nor
described here.

v1.9 | 6/16/2021 40

https://github.com/randao/randao
https://github.com/randao/randao
https://openethereum.github.io/Parity-name-registry.html
https://openethereum.github.io/Permissioning.html#gas-price
https://github.com/NethermindEth/nethermind/issues/2300
https://github.com/poanetwork/open-ethereum/tree/posdao-backport
https://openethereum.github.io/wiki/Validator-Set.html#reporting-contract

For a detailed description of each function of the contracts, see the source code.

9.2 Implementation details
The following detailed outline is provided for the xDai POSDAO AuRa implementation. They
describe starting a network from the genesis block. Note that these details may change as
further optimizations are introduced. Any protocol changes will be documented in updated
versions.

9.2.1 Network startup
Before the network starts from the genesis block, we compile all consensus contracts and write
their bytecodes into the spec.json file with the make_spec.js script. The compiled bytecode
contains constructor parameters for those contracts which have a constructor. The contracts can
also be deployed on an existing AuRa network, not only on the genesis block.

The network should have several initial validators which are defined in the constructor of the
InitializerAuRa contract. We pass their addresses to the make_spec.js (example) along
with the other necessary parameters to configure the network on the genesis block.

After the spec.json file is ready, the initial validators must configure and start their
OpenEthereum nodes. Each node uses the spec.json as a chain specification.

Once the network is started, the ValidatorSetAuRa.finalizeChange function is called by
the system at the beginning of the finality block (see the OpenEthereum Wiki for details). This
function sets the initiateChangeAllowed boolean flag to true (this flag is used by the
ValidatorSetAuRa.emitInitiateChange function which is called by a validator’s node
when there is a change in the pending validator list). The
ValidatorSetAuRa.finalizeChange function is described in more detail below.

Beginning from the genesis block, the initial validators do not have stakes because an ERC
token contract is not yet deployed. They are able to place stakes after the ERC token contract is
deployed and the ERC677-to-ERC677 and ERC20-to-Native bridges are installed (when using a
dual token environment).

In addition to the initial validators, we also define the contracts' owner. The owner is an address
which is used for the bridge deployments and future contracts' upgradability. Initially, the owner
can make zero gas price service transactions because there are no native coins on its balance.

When the ERC contract and the bridges (ERC677-to-ERC677 and ERC20-to-Native) are
deployed by the owner, the following functions are called (when using a dual token
environment):

v1.9 | 6/16/2021 41

https://github.com/poanetwork/posdao-contracts/tree/master/contracts
https://github.com/poanetwork/posdao-contracts/blob/master/templates/spec.json
https://github.com/poanetwork/posdao-contracts/blob/master/scripts/make_spec.js
https://github.com/poanetwork/posdao-test-setup/blob/master/scripts/network-spec
https://github.com/poanetwork/open-ethereum/tree/posdao-backport
https://wiki.parity.io/Chain-specification.html
https://openethereum.github.io/Validator-Set.html

● BlockRewardAuRa.setErcToErcBridgesAllowed
● BlockRewardAuRa.setErcToNativeBridgesAllowed
● StakingAuRa.setErc677TokenContract
● ERC677BridgeTokenRewardable.setBlockRewardContract
● ERC677BridgeTokenRewardable.setStakingContract

Then the owner:
1. Deploys the MultiSigWallet contract with the trusted addresses defined in its constructor.
2. Calls the transferOwnership function (it may have another name depending on the

contract) for each of the contracts it deployed and for each consensus contract.
3. Passes its address to the Certifier.revoke and

TxPermission.removeAllowedSender functions to disallow itself from using zero
gas price service transactions. At this point, the owner becomes a regular address
without special system rights.

As each block is closed, the BlockRewardAuRa.reward function is called by the validator's
node which created that block. This is an OpenEthereum feature and it occurs for each block
(with no gaps - see https://openethereum.github.io/Block-Reward-Contract.html). This function
primarily exists for dynamic block rewards, but we use it for POSDAO because
BlockRewardAuRa.reward has no block gas limit, allowing us to make a lot of calculations.
This function is described in more detail below.

9.2.2 Placing stakes in ERC677 tokens
During the first staking epoch the initial validators place stakes into their own pools in order to
retain their seats after the first staking epoch finishes.

Each validator has two addresses: a mining address and a staking address. The mining address
is used by the validator’s node (this address must be specified as engine_signer and unlock in
the OpenEthereum node configuration toml file) to make zero gas price service transactions and
to sign blocks. The staking address is used for other purposes (placing stakes, storing tokens,
etc.)

To retrieve the mining address by its staking address, and vice versa, the
ValidatorSetAuRa.miningByStakingAddress and stakingByMiningAddress
getters can be used.

Staking ERC tokens are acquired from the Ethereum mainnet (the foreign network) and bridged
to the xDai POSDAO chain (the home network).

9.2.2.1 POSDAO ERC677 staking tokens
POSDAO tokens exist on the Ethereum mainnet as ERC677 tokens. Once acquired, users can
transfer their tokens to the xDai POSDAO chain using the ERC677-to-ERC677 bridge. There is

v1.9 | 6/16/2021 42

https://github.com/gnosis/MultiSigWallet
https://openethereum.github.io/Block-Reward-Contract.html

an entrance fee associated with this transfer. These tokens are then placed as stakes, as
detailed below. Block rewards are paid in staking tokens, based on an annual inflation rate.

9.2.2.2 Initial validator stakes
To place a stake, a validator must have at least CANDIDATE_MIN_STAKE (see the
StakingAuRa.candidateMinStake getter) tokens on the ERC balance of its staking
address. This address must also have a balance of native coins to pay for gas costs. To get
staking tokens from Ethereum mainnet (foreign network), a validator uses the
ERC677-to-ERC677 bridge. To get native coins, the validator uses the ERC20-to-Native bridge
to transfer ERC20 DAI tokens from the foreign network to the home network (xDai POSDAO
chain).

After the tokens and native coins are received from the foreign network using the bridge, the
initial validator calls the StakingAuRa.stake function from the staking address with a
non-zero gas price. The validator passes their staking address and staking amount (greater
than or equal to the CANDIDATE_MIN_STAKE) as parameters.

9.2.2.3 Candidate stakes
A new candidate must:

1. Acquire tokens and native coins from the foreign network.
2. Launch their OpenEthereum node.
3. Call StakingAuRa.addPool from their staking address and pass the staking amount

(>= CANDIDATE_MIN_STAKE) and their mining address as parameters. The
StakingAuRa.addPool function is similar to StakingAuRa.staking but is only for
candidates.

9.2.2.4 Delegator stakes
A delegator must:

1. Acquire tokens and native coins from the foreign network.
2. Call the StakingAuRa.stake function and pass the staking address of the

validator/candidate they would like to place their stake on, and the staking amount which
is greater than or equal to DELEGATOR_MIN_STAKE (see the
StakingAuRa.delegatorMinStake getter).

9.2.2.5 Staking window
The StakingAuRa.stake and StakingAuRa.addPool functions can only be called if the
StakingAuRa.areStakeAndWithdrawAllowed getter returns true. This getter defines the
window inside the staking epoch, during which staking and withdrawing can be performed by
the participants. For AuRa, this window begins from the first block of a staking epoch and ends
during the final blocks of the staking epoch when a disallow period begins (the disallow period
duration is defined by StakingAuRa.stakeWithdrawDisallowPeriod).

v1.9 | 6/16/2021 43

9.2.2.6 Helpful StakingAuRa getters

● StakingAuRa.stakeAmount: the total staked amount for a specified pool made by
the specified address. Doesn't include the amount ordered for withdrawal.

● StakingAuRa.orderedWithdrawAmount: the current amount of staking
tokens/coins ordered for withdrawal from the specified pool by the specified staker.

● StakingAuRa.stakeAmountTotal: the total staked amount for a specified pool
made by all delegators and the specified staking address. Doesn't include the amount
ordered for withdrawal.

● StakingAuRa.orderedWithdrawAmountTotal: the current total amount of
staking tokens/coins ordered for withdrawal from the specified pool by all of its stakers.

● StakingAuRa.getPools: the list of active pools (list of staking addresses of
candidates and validators).

● StakingAuRa.poolDelegators: the list of current delegators of a specified pool.

9.2.3 New staking epoch, validator selection, and finalizing changes
During each staking epoch, participants can call these functions:

● StakingAuRa.stake: to place stakes;
● StakingAuRa.addPool: to create a new pool (for candidates only);
● StakingAuRa.removeMyPool: to remove an existing pool, make it inactive (for

candidates and validators);
● StakingAuRa.withdraw, StakingAuRa.orderWithdraw,

StakingAuRa.claimOrderedWithdraw: to withdraw stakes;
● StakingAuRa.moveStake: to move stakes.
● StakingAuRa.claimReward: to withdraw a reward from the specified pool for the

specified staking epochs.

On the last block of the staking epoch, the BlockRewardAuRa.reward function calls the
ValidatorSetAuRa.newValidatorSet function. This function:

● selects new validators;
● writes the list of new validators (validator set) into the pending list;
● increments the staking epoch number which is returned by

StakingAuRa.stakingEpoch getter;
● resets the number of the validator set apply block which is returned by the

ValidatorSetAuRa.validatorSetApplyBlock getter.

If the total number of candidates and validators is less than or equal to MAX_VALIDATORS,
they will all become validators on the next staking epoch. Otherwise, the validators are selected
based on a random value and weighted by their pool sizes (the larger the pool, the more likely
the candidate becomes a validator). The random seed is taken from the RandomAuRa contract
described below.

v1.9 | 6/16/2021 44

The pending list of new validators (their mining addresses) can be read by the
ValidatorSetAuRa.getPendingValidators getter.

The validator set cannot be changed immediately because the InitiateChange event must
be emitted (see the OpenEthereum Wiki) prior to this change, so the pending validator set is
queued by the ValidatorSetAuRa.newValidatorSet function to be handled later by the
ValidatorSetAuRa.emitInitiateChange and
ValidatorSetAuRa.finalizeChange functions.

The ValidatorSetAuRa.finalizeChange function is only called for one
InitiateChange event. If there are several such events, finalizeChange is called only
once for the first emitted event (and the additional InitiateChange events are ignored). So,
we can't emit the next InitiateChange unless the previous event is not finalized.

For that reason, there is a pending validator set used by the
ValidatorSetAuRa.emitInitiateChange function. When the
ValidatorSetAuRa.emitInitiateChangeCallable getter returns true, a validator's
node calls ValidatorSetAuRa.emitInitiateChange which reads the pending validator
set and emits the InitiateChange event to let the validators' nodes know that the set of
validators should be changed (see the OpenEthereum Wiki).

When the InitiateChange event is emitted, the
ValidatorSetAuRa.emitInitiateChange function sets the initiateChangeAllowed
boolean flag to false so that the ValidatorSetAuRa.emitInitiateChangeCallable
getter returns false until ValidatorSetAuRa.finalizeChange is called by the engine.

When applying the new validator set, the engine calls the
ValidatorSetAuRa.finalizeChange function to notify the ValidatorSetAuRa contract
that the pending validator set can be written to the current validator set, which is returned by the
ValidatorSetAuRa.getValidators getter.

At this point, the ValidatorSetAuRa.finalizeChange function:
● writes the pending validator set to the current set;
● sets validatorSetApplyBlock to the current block number;
● sets the initiateChangeAllowed boolean flag to true.

The ValidatorSetAuRa.validatorSetApplyBlock getter is used to determine the block
number where the current validator set was applied by the engine. If this getter returns 0, it
means the new staking epoch is started (ValidatorSetAuRa.newValidatorSet is called)
but the new validator set is not yet applied by the engine.

v1.9 | 6/16/2021 45

https://openethereum.github.io/Validator-Set.html
https://openethereum.github.io/Validator-Set.html

9.2.4 Validator set changes and pending validator set
The validator set is always evaluated at the very end of a staking epoch, however, it can also be
changed during a staking epoch if a validator needs to be removed due to misbehavior.

In such cases the malicious validator is removed from the pending validator set (see the internal
ValidatorSetAuRa._removeMaliciousValidator function) and the new pending
validator set is marked to be handled later by the
ValidatorSetAuRa.emitInitiateChange and
ValidatorSetAuRa.finalizeChange functions.

As with staking epoch validator set changes, the ValidatorSetAuRa.finalizeChange
function is used to finalize the validator set change when the malicious validator is removed.

The pending validator set checkmark (see
ValidatorSetAuRa._pendingValidatorsChanged internal boolean flag) is used to
finalize different validator sets one after another. This may be required when a malicious
validator is removed and the new staking epoch begins immediately after the removal, or when
one malicious validator is removed at block number N, but another malicious validator is
removed on the next block N+1. Without the boolean checkmark, such cases would be handled
incorrectly because some of the corresponding InitiateChange events would be ignored by
the OpenEthereum engine (as mentioned above).

9.2.5 Random seed accumulation
When the number of pools (validators + candidates) is more than MAX_VALIDATORS, a
random seed is used to select MAX_VALIDATORS validators for a new staking epoch (see the
ValidatorSetAuRa.newValidatorSet function).

The random seed is stored in the RandomAuRa contract (see the RandomAuRa.currentSeed
getter) and generated in the RANDAO manner. There are several collection rounds per staking
epoch, each of which is split into two equal phases - a commit phase and reveal phase:

1. Commit phase: Each validator node generates its secret number on each phase and
calls the RandomAuRa.commitHash function to commit the hash of the secret (one
time per each commit phase).

2. Reveal phase: Each node passes its secret to the RandomAuRa.revealNumber
function (once per each reveal phase). The revealNumber function XORs the revealed
secret with the current seed stored in the contract, increasing entropy in every collection
round.

Committing/revealing the secret is mandatory for each validator. These functions are called
automatically by each validator’s node from the validator's mining address (see 9.3). An

v1.9 | 6/16/2021 46

https://github.com/randao/randao

explanation is also available in
https://github.com/openethereum/openethereum/pull/10946#issuecomment-547857765.

The length of a collection round is defined at network startup in the InitializerAuRa
contract constructor when starting from genesis (or through the RandomAuRa.initialize
function when starting on an existing network).

The RandomAuRa.onFinishCollectRound function is called on each block by the
BlockRewardAuRa.reward function. At the end of each collection round
RandomAuRa.onFinishCollectRound checks whether the validator skipped revealing the
secret during the collection round and increments a skip counter if they did.

On the final collection round of each staking epoch the
RandomAuRa.onFinishCollectRound function checks each validator to see

1. if they skipped revealing too often during the current staking epoch or,
2. if they skipped revealing on the last collection round.

If either of these are true, the validator is treated as malicious and removed with the
ValidatorSetAuRa.removeMaliciousValidators function.

The maximum number of reveal skips is defined in the
RandomAuRa.onFinishCollectRound function and depends on the disallow period
duration (see the StakingAuRa.stakeWithdrawDisallowPeriod getter) and on the
length of collection round (see the RandomAuRa.collectRoundLength getter).

The final collection round is especially important to check. During the final round, the last
validator in the validator set can decide not to reveal their secret to try to influence the outcome
in the ValidatorSetAuRa.newValidatorSet function. For this reason, any validator that
doesn't reveal their secret during the last collection round is treated as malicious and removed
from the validator set.

To prevent this from happening accidentally due to disconnection, it is recommended that each
validator run two separate nodes simultaneously with different internet connections. The first
node must have the engine_signer option in a configuration toml file, the second node
should not have that option but should have the watchguard script which detects if the first node
goes offline and sets the engine_signer option for the second node (see
https://github.com/poanetwork/posdao-test-setup/issues/39).

For debugging purposes, it is possible to temporarily turn off the punishment for skipping
random number reveals in the RandomAuRa contract (see its setPunishForUnreveal
function). This boolean flag may be used for testing when a new version of OpenEthereum is
unstable and block skipping is evident due to possible bugs in the engine.

v1.9 | 6/16/2021 47

https://github.com/openethereum/openethereum/pull/10946#issuecomment-547857765
https://github.com/poanetwork/posdao-test-setup/issues/39

Since a new validator set can be applied by the engine at any time (e.g. in the middle of some
commits/reveals phase), there may be a case when new validators can't fully commit/reveal
their secrets at the very beginning of the staking epoch. Because of this, there is a short grace
period after the new validator set is applied during which the skip counter is not incremented if a
reveal is skipped (see the code of RandomAuRa.onFinishCollectRound function).

RandomAuRa.commitHash and RandomAuRa.revealNumber are called with a zero gas
price. This is enabled because the validators' mining addresses can have zero balances.

To protect the network against possible spamming by a malicious validator calling the
RandomAuRa functions with zero gas price too often, there is a protection mechanism
implemented in the TxPermission.allowedTxTypes function: it doesn't allow creating the
RandomAuRa transactions unless they are permitted on the current block (see the
RandomAuRa.commitHashCallable and RandomAuRa.revealNumberCallable
getters).

The TxPermission.allowedTxTypes getter is called by the OpenEthereum node every
time a new transaction is about to be added to a block. This getter checks if the transaction can
be included into the block or not.

9.2.6 Removing malicious validators
There are two cases when a validator can be removed due to misbehavior:

1. by the RandomAuRa contract due to not revealing random numbers (see above);
2. by the ValidatorSetAuRa.reportMalicious function (see the OpenEthereum

Wiki).

The ValidatorSetAuRa.reportMalicious function can be called by validators to report a
specified validator's misbehavior on a specified block number. If more than 2/3 of validators
report about the same validator for the same block, the validator is removed from the validator
set (see the code of the ValidatorSetAuRa.reportMalicious function).

The validators' nodes call ValidatorSetAuRa.reportMalicious with a zero gas price.
This is enabled because the validators' mining addresses can have zero balances.

To protect the network against possible spamming by a malicious validator calling the
ValidatorSetAuRa.reportMalicious function with a zero gas price too often, there is a
protection mechanism implemented in the TxPermission.allowedTxTypes function: it
doesn't allow creation of the ValidatorSetAuRa.reportMalicious transaction unless it is
permitted on the current block (see the ValidatorSetAuRa.reportMaliciousCallable
getter).

v1.9 | 6/16/2021 48

https://github.com/poanetwork/open-ethereum/tree/posdao-backport
https://openethereum.github.io/Validator-Set.html#reporting-contract
https://openethereum.github.io/Validator-Set.html#reporting-contract

Moreover, if some validator calls ValidatorSetAuRa.reportMalicious too often (much
more often than others), such a validator is also treated as malicious (see the code of
ValidatorSetAuRa.reportMaliciousCallable and
ValidatorSetAuRa.reportMalicious).

The validator removal process is implemented in the
ValidatorSetAuRa._removeMaliciousValidator internal function. It is called by
ValidatorSetAuRa._removeMaliciousValidators. When the validator is removed,
their mining address is banned for the BAN_PERIOD. This means that the banned validator and
their delegators cannot withdraw their stakes until the BAN_PERIOD expires (see the
StakingAuRaBase._isWithdrawAllowed internal function). Also, the banned mining
address cannot be added into the validator set during that period.

When the validator is removed from the current validator set, the new pending validator set
waits to be passed to the InitiateChange event (see 9.2.4).

Helpful public getters:
● ValidatorSetAuRa.isValidatorBanned: check if a specified mining address is

banned;
● ValidatorSetAuRa.banCounter: read the ban counter, which is incremented when

a validator is banned;
● ValidatorSetAuRa.bannedUntil: view the block number when a mining address

is released from the ban.

In a test network, it is possible to set one validator that is not removable (see 9.2.11). Such a
validator cannot be removed from the validator set even due to misbehavior (see
ValidatorSetAuRa._removeMaliciousValidator and the section about the
unremovable validator below). This feature prevents test network shutdown if there is a problem
with the validator set (for example if all validators leave the network simultaneously).

9.2.7 Block reward distribution
The block reward is distributed among validators and their delegators by the
BlockRewardAuRa.reward function. This function is called by the OpenEthereum engine
when closing each block.

The pool reward distribution logic is implemented in the
BlockRewardAuRaBase._distributeRewards internal function. Changes in stake
amounts during the staking epoch do not affect the pool reward during that epoch, but they do
affect the future rewards collected on the next staking epoch.

There are several types of block rewards available for distribution:
● ERC20-to-Native bridge fee;

v1.9 | 6/16/2021 49

● ERC20-to-Native bridge reward from Dai Savings Rate;
● ERC677-to-ERC677 or Native-to-ERC20 bridge fee;
● inflation distribution.

Block rewards are distributed at the last block of each staking epoch (except the very first
staking epoch) - see the BlockRewardAuRaBase._distributeRewards internal function
for details. Rewards are not distributed automatically, they must be pulled by participants using
the StakingAuRa.claimReward function.

9.2.7.1 ERC20-to-Native bridge fee distribution
This distribution occurs after the bridge passes the fee amount to the
BlockRewardAuRa.addBridgeNativeRewardReceivers function. The fee is distributed
in native coins (xDai).

When the bridge passes the fee amount, its value is stored in the BlockRewardAuRa contract
and then read by the BlockRewardAuRaBase._distributeNativeRewards internal
function at the end of staking epoch. The function saves distribution shares to the contract’s
state and returns the amount which needs to be minted by the OpenEthereum engine. The
distribution shares are then used by the StakingAuRa.claimReward function which
transfers the participant’s portion of the reward from the BlockRewardAuRa balance to the
participant’s balance.

9.2.7.2 ERC20-to-Native bridge reward from Dai Savings Rate
This type of reward works similarly to the ERC20-to-Native bridge fee. The reward in the form of
native coins is accrued to the BlockRewardAuRa contract with the
BlockRewardAuRa.addBridgeNativeRewardReceivers function, and the reward
amount is used as part of the total reward distributed to participants at the end of staking epoch.

The Dai Savings Rate reward is accumulated on the Mainnet side in the form of DAI tokens
(while the bridge has a positive DAI balance) to be transferred to xDai later.

9.2.7.3 ERC677-to-ERC677 or Native-to-ERC20 bridge fee distribution
This distribution occurs after the bridge passes the fee amount to the
BlockRewardAuRa.addBridgeTokenRewardReceivers function. The fee is distributed
in ERC staking tokens.

When the bridge passes the fee amount, its value is stored in the BlockRewardAuRa contract
and then read by the BlockRewardAuRaTokens._distributeTokenRewards internal
function. The function saves distribution shares to the contract’s state and then calls the
mintReward function of the ERC contract to mint the total reward amount The distribution
shares are then used by the StakingAuRa.claimReward function which transfers the
participant’s part of the reward from the BlockRewardAuRa balance to the participant’s balance.

v1.9 | 6/16/2021 50

9.2.7.4 Inflation distribution (when using ERC staking tokens)
Inflation distribution uses the total stake amount calculated as snapshots at the beginning of the
staking epoch. Only the amounts staked on active validators are included in the snapshots.

The BlockRewardAuRaBase._distributeRewards internal function is called at the end of
staking epoch. It reads the total stake amount snapshot calculated at the beginning of the
staking epoch (see the BlockRewardAuRa.reward). The given amount is multiplied by a
constant so that the inflation is defined by the formula (see 3. Reward distribution). Once
calculated, the amount is distributed among the validators and their delegators. The distributed
reward can be claimed using the StakingAuRa.claimReward function.

9.2.7.5 Inflation distribution (when using native staking coins)
The BlockRewardAuRaBase._distributeRewards internal function is called at the end of
a staking epoch. It reads the total stake amount snapshot calculated at the beginning of the
staking epoch (see the BlockRewardAuRa.reward). The given amount is multiplied by a
constant so that the inflation is defined by the formula (see 3. Reward distribution) and then
distributed by the BlockRewardAuRaBase._distributeNativeRewards among the
validators and their delegators. The distributed reward can be claimed using the
StakingAuRa.claimReward function.

9.2.8 Withdrawing stakes
Any participant can withdraw their stake (or part of it) using the StakingAuRa.withdraw
function. The user passes the staking address of the pool and the amount to withdraw from that
pool.

Withdrawals are allowed during the same period of time when stakes are allowed (see 9.2.2.5).

The user can withdraw their full stake or a portion of it. In the latter case the user must leave at
least DELEGATOR_MIN_STAKE or CANDIDATE_MIN_STAKE (depending on their role) in the
pool. This is controlled by a contract.

If the user withdraws from a candidate's pool which is not yet a validator, they can withdraw their
entire stake amount minus the already ordered withdrawal amount.

When withdrawing from a validator's pool, the user can withdraw only the amount which they
have staked during the current staking epoch (see StakingAuRa.maxWithdrawAllowed
getter) or they can order a withdrawal. That amount can be claimed during the following staking
epochs (see the StakingAuRa.claimOrderedWithdraw function).

The StakingAuRa.maxWithdrawAllowed getter checks the maximum current allowable
withdrawal. If the pool is an active validator, the maximum possible withdrawal amount is

v1.9 | 6/16/2021 51

calculated based on existing withdrawal orders as well as the amount staked during the current
staking epoch.

The StakingAuRa.maxWithdrawOrderAllowed getter checks the maximum possible
withdrawal amount available to order. If the pool is an active validator, the maximum possible
withdrawal amount is calculated based on existing withdrawal orders.

The StakingAuRa.orderWithdraw function orders a withdrawal. The staking address of the
pool and the amount to be withdrawn are passed into the function. The ordered withdrawal
amounts can also be reduced or cancelled by passing a negative value into the
StakingAuRa.orderWithdraw function. The ordered amount can be claimed during the
following staking epochs with the StakingAuRa.claimOrderedWithdraw function.

The StakingAuRa.orderedWithdrawAmount public getter is used to check the current
ordered withdrawal amount.

9.2.9 Moving stakes
In addition to withdrawing stakes, a participant can also move their stake (or a portion of their
stake) from one pool to another using the StakingAuRa.moveStake function. This prevents
the removal of staking tokens/coins from the balance of the StakingAuRa contract when
moving from one pool to another. The stake moving functionality is subject to the same rules
and limitations implemented for the withdrawal functions above.

9.2.10 Voluntary exit from a validator set
If a validator wants to exit from the validator set, they can use one of the following methods:

1. The validator can call the StakingAuRa.removeMyPool function from their staking
address. The pool of the validator is removed from the list of active pools by this
function, thus this pool won't take part in forming a new validator set at the beginning of
the next staking epoch (see the ValidatorSetAuRa.newValidatorSet function).

2. The validator can order a withdrawal of their entire stake amount using the
StakingAuRa.orderWithdraw function (see 9.2.8). In this case, the validator will
have zero real balance in their own pool at the beginning of the next staking epoch and
the pool will not be selected by the ValidatorSetAuRa.newValidatorSet function.

9.2.11 Unremovable validator
Optionally, the POSDAO network can have one unremovable validator (recommended for test
networks only). This is defined once on network startup through the InitializerAuRa
contract (see the _firstValidatorIsUnremovable boolean parameter of the constructor).
If the parameter is true, the first initial validator defined in the constructor is unremovable.

v1.9 | 6/16/2021 52

Such a validator cannot be removed from the validator set either by the
ValidatorSetAuRa.newValidatorSet (even if the validator didn't place any stake for
themselves), nor by the ValidatorSetAuRa.reportMalicious function. However, if they
want to change their unremovable status, they can call the
ValidatorSetAuRa.clearUnremovableValidator function by their staking address.
This function can also be called by the contract's owner. The
ValidatorSetAuRa.clearUnremovableValidator function can only be called once.
After it is called, it is not possible to have another unremovable validator.

The ValidatorSetAuRa.unremovableValidator public getter retrieves the staking
address of the unremovable validator. If this getter returns a zero address, there is no
unremovable validator in the validator set.

9.2.12 Zero gas price and service transactions
The owner and the current validators are able to make service transactions (regular transactions
with zero gas price) from their mining addresses. This is done through the Certifier
contract; its address is written into the Registry contract (see the OpenEthereum Wiki). The
owner has already been mentioned in 9.2.1 above.

Initially, the validators don't have any native coins to pay gas fees when executing transactions
(when calling the RandomAuRa.commitHash, RandomAuRa.revealNumber,
ValidatorSetAuRa.emitInitiateChange, and
ValidatorSetAuRa.reportMalicious functions; see 9.3). For that reason, their mining
addresses can call those functions with a zero gas price.

All transactions are controlled by the TxPermission contract: it doesn't allow creating zero
gas price transactions unless they are permitted on the current block (see the
TxPermission.allowedTxTypes function). This protects against abusive use of a zero gas
price: the service functions mentioned above can only be called when it is permitted, so they
cannot be invoked too often to spam the network.

9.2.13 Claiming reward
After the reward is accrued and distributed, a participant can take it from the balance of the
BlockRewardAuRa contract. To do that, the participant must call the
StakingAuRa.claimReward function. This must be called by the participant’s staking
address (for validators/candidates) or the delegator’s address (for delegators). The function can
be called at any time without restrictions. The caller must pass the function a staking address of
the pool from which they want to take their rewards, and an optional array of past staking
epochs (an array of their numbers in ascending order). The array of staking epochs can also be
left empty - allowing a participant to claim rewards for all past staking epochs. The function

v1.9 | 6/16/2021 53

https://openethereum.github.io/wiki/Permissioning.html#gas-price

transfers the total reward amount (staking tokens and native coins) from the
BlockRewardAuRa contract’s balance to the caller’s address according to their reward shares.

If the function requires too much gas when the empty staking epoch list is specified as input, a
participant can specify explicit staking epochs and receive a partial reward by conducting
several transactions. This can happen if a participant staked into a pool and didn’t withdraw their
reward for a long period of time (e.g. a couple of years or even longer). To get the list of staking
epochs for which a specified staker can claim their rewards from a specified pool (staking
address), the staker can use the BlockRewardAuRa.epochsToClaimRewardFrom getter,
passing it the pool’s staking address along with their own (staker’s) address.

9.3 OpenEthereum client for AuRa
In order to launch the POSDAO network with AuRa, the stable OpenEthereum version has been
modified to work with the POSDAO contracts. AuRa implementation in the latest OpenEthereum
client contains the following features implemented since v2.7.2:

Note prior issues reference below have been added to this backports issue:
https://github.com/openethereum/openethereum/issues/118

● Validator nodes automatically take part in random number generation by making calls to
the randomness contract. In the commit phase, they generate a random number and
publish its hash on the contract. In the reveal phase, they publish the number itself. The
final random number is generated from all of the validators’ contributions (see
https://github.com/openethereum/openethereum/pull/10946).

● Validators call the reportMalicious function (see the OpenEthereum Wiki) if they
observe other validators not following the protocol. We extended reporting to report
when a validator tries to produce siblings blocks (see
https://github.com/openethereum/openethereum/pull/11160).

● The validator node that creates a block in which the validator set changes, either
because a new staking epoch begins or because a malicious validator is about to be
removed, automatically emits the InitiateChange event (see the OpenEthereum
Wiki and https://github.com/openethereum/openethereum/pull/11245).

● The transaction permission contract and its interface were extended, allowing validators
to make most calls to governance contracts with a zero gas price, so that the signing
address doesn’t need a non-zero balance. That includes all of the above calls. The
extended interface now allows filtering not only by sender, contract address and value,
but also by gas price and transaction data (see
https://github.com/openethereum/openethereum/pull/11170).

● We implemented a mechanism for validators to directly push their governance-related
transactions onto blocks they are preparing, so they don’t have to go through the
transaction queue first. Some transactions, like malice reports, use both mechanisms, so
that even if a node has been removed from the validator set at the end of a staking

v1.9 | 6/16/2021 54

https://github.com/poanetwork/open-ethereum/tree/posdao-backport
https://github.com/poanetwork/open-ethereum/tree/posdao-backport
https://github.com/openethereum/openethereum/issues/118
https://github.com/openethereum/openethereum/pull/10946
https://openethereum.github.io/Validator-Set.html#reporting-contract
https://github.com/openethereum/openethereum/pull/11160
https://openethereum.github.io/wiki/Validator-Set.html
https://openethereum.github.io/wiki/Validator-Set.html
https://github.com/openethereum/openethereum/pull/11245
https://github.com/openethereum/openethereum/pull/11170

epoch, it can still send its reports to others (see
https://github.com/openethereum/openethereum/pull/11245).

● We added the posdaoTransition spec option to allow activation of all POSDAO
features at a specified block (see
https://github.com/openethereum/openethereum/pull/11245).

● We increased signature requirements to ⅔ of validators rather than ½ to protect against
the cloning attack scenario (added `twoThirdsMajorityTransition` spec option, see
https://github.com/openethereum/openethereum/pull/10909).

● We added the ability to change the BlockReward contract address multiple times (the
blockRewardContractTransitions spec option). This enables an existing network
to migrate to POSDAO at a specified block number. See
https://github.com/openethereum/openethereum/pull/10875 for more info.

● The stepDuration spec parameter has been modified to allow for multiple step
transitions on an AuRa chain. If step duration (block time) needs to change on an
existing network, it is now possible to use the extended stepDuration parameter. See
https://github.com/poanetwork/open-ethereum/issues/122#issuecomment-481556441 for
instructions on use. Implemented in
https://github.com/openethereum/openethereum/pull/10902 and
https://github.com/openethereum/openethereum/pull/11379.

● We added the ability to define the block gas limit in a contract through the
blockGasLimitContractTransitions spec option (see
https://github.com/poanetwork/open-ethereum/issues/119#issuecomment-511379844).
This option overwrites the default block gas limit calculations based on the
gas_floor_target and gasLimitBoundDivisor parameters and allows setting
the gas limit for each block dynamically. Implemented in
https://github.com/openethereum/openethereum/pull/10928.

● parity_clearEngineSigner RPC method has been added in
https://github.com/openethereum/openethereum/pull/10920 to provide the ability to
deactivate validator’s second (reserve) node when a primary node goes back to work
again (see https://github.com/poanetwork/posdao-test-setup/issues/39).

Update 06/16/2021: Nethermind client v1.10.71+ now supports all POSDAO features and
is the recommended client for implementation purposes.

9.4 xDai POSDAO network parameters
Constants used in the xDai POSDAO reference implementation

Constant Value Unit

MAX_CANDIDATES 3000 candidates (including
validators)

v1.9 | 6/16/2021 55

https://github.com/openethereum/openethereum/pull/11245
https://github.com/openethereum/openethereum/pull/11245
https://github.com/openethereum/openethereum/pull/10909
https://github.com/openethereum/openethereum/pull/10875
https://github.com/poanetwork/open-ethereum/issues/122#issuecomment-481556441
https://github.com/openethereum/openethereum/pull/10902
https://github.com/openethereum/openethereum/pull/11379
https://github.com/poanetwork/open-ethereum/issues/119#issuecomment-511379844
https://github.com/openethereum/openethereum/pull/10928
https://github.com/openethereum/openethereum/pull/10920
https://github.com/poanetwork/posdao-test-setup/issues/39

MAX_VALIDATORS 19 validators

CANDIDATE_MIN_STAKE 20000 STAKE_UNITs

DELEGATOR_MIN_STAKE 200 <updated from
1000 12/9/2020>

STAKE_UNITs

STAKE_UNIT 10**18 native coin or ERC20
token with 18 decimals

SYSTEM_ADDRESS 2**160 - 2 -

BAN_PERIOD 90 days

STAKING_EPOCH_PERIOD 7 (120992) days (blocks)

COLLECTION_ROUND_LENGTH 76 blocks

STAKE_WITHDRAW_DISALLOW_PERIOD 6 (4332) hours (blocks)

BRIDGE_ENTRANCE_FEE 1 %

BRIDGE_EXIT_FEE 1 %

MAX_* constant values were obtained as a result of stress testing with AuRa where the step
duration is equal to 5 seconds and block gas limit is 10 million.

The STAKING_EPOCH_PERIOD and COLLECTION_ROUND_LENGTH were set according to
the formulas

COLLECTION_ROUND_LENGTH % MAX_VALIDATORS === 0
STAKING_EPOCH_PERIOD % COLLECTION_ROUND_LENGTH === 0

to eliminate validator cartels and make sure every validator can participate in random number
generation during the last collection round of an epoch.

v1.9 | 6/16/2021 56

Appendix A: POSDAO Reward Distribution
A working version where values can be manually configured is available here (copy the spreadsheet to
edit): Total sum staked: 554,200 Common reward for all pools: 100

Pool1
Staked
sum

Reward
%

Reward
tokens

Validator 2000 30 10
Delegator 1000 0.1388888889 0.0462962963
Delegator 1000 0.1388888889 0.0462962963
Delegator 1000 0.1388888889 0.0462962963
Delegator 500000 69.44444444 23.14814815
Delegator 1000 0.1388888889 0.0462962963

Total: 506000 33.33333333
Delegators: 504000

Pool2
Staked
sum

Reward
%

Reward
tokens

Validator 10000 30 10
Delegator 100 0.2491103203 0.08303677343
Delegator 1000 2.491103203 0.8303677343
Delegator 10000 24.91103203 8.303677343
Delegator 10000 24.91103203 8.303677343
Delegator 1000 2.491103203 0.8303677343
Delegator 6000 14.94661922 4.982206406

Total: 38100 33.33333333
Delegators: 28100

Pool3
Staked
sum Reward, % Reward, tokens

Validator 5000 49.5049505 16.50165017
Delegator 100 0.9900990099 0.3300330033
Delegator 5000 49.5049505 16.50165017
Delegator 0 0 0
Delegator 0 0 0
Delegator 0 0 0

Total: 10100 33.33333333
Delegators: 5100

v1.9 | 6/16/2021 57

https://docs.google.com/spreadsheets/d/1i41TRMa_Sp7vt9c2XKF9-RSsnVaeaCInEUau31xexYo/edit#gid=1995349155

Appendix B: DAI-to-xDai / ERC20-to-Native bridge
example scenario

Assumptions:
● Validators/delegators are elected and have bridged POSDAO (STAKE) tokens
● Conversion rate is 1 DAI = 1 xDai
● Bridge entrance fee is 1%, and exit fee is 1%
● Same consensus validators are active for entrance and exit. If different staking epochs,

different validators and delegators may receive entrance/exit fee

Validator Pool Stakes:
● Validator Pool 1: Validator 1 has 100 STAKE and 2 delegators have 100 STAKE each

(300 total)
● Validator Pool 2: Validator 2 has 100 STAKE and 1 delegator has 300 (400 total)
● Validators Pools 3-10 are single entities validators with 200 STAKE each

A user wants to use the xDai POSDAO chain for scalability purposes. They transfer 100
DAI into the xDai POSDAO chain.

1. 100 DAI are sent to the mainnet bridge contract.
2. 100 DAI are locked in the bridge smart contract.
3. Bridge entrance fee of 1 xDai native coin is minted on the xDai side and distributed to

active validator pools (1 DAI = 1 xDai = 0.1 xDai for each of 10 pools)
4. The remaining 99 xDai are minted via a smart contract on the xDai side and sent to the

user’s address.
5. User conducts a lot of transactions, ending up with .3 xDai in transaction fees.

1. Transaction fees are accrued as they occur. They are sent to the validator (only
the validator, not the delegators) responsible for sealing the block where the
transaction occurred.

2. When finished, the user wants to return to the mainnet and has 90 xDAI
remaining:

1. 8.7 xDai remains on the xDai POSDAO chain, paid to others
2. .3 xDai went to transaction fees
3. 1 xDai went to the bridge entrance fee

6. User exits the xDai POSDAO chain. The bridge smart contract on the xDai side extracts
exit fee = .9 xDai. Once the fee is extracted, 89.1 xDai are burned.

7. Bridge exit fee is distributed to active validator pools (.9 xDai= .09 xDai for each of 10
validators’ pools)

8. 89.1 DAI are unlocked in the contract on the mainnet.

v1.9 | 6/16/2021 58

Total fees extracted:
● 1 xDai on bridge entrance
● .9 xDai on bridge exit
● .3 xDai in transaction fees (for simplicity lets say 4 separate validators participated in

these transactions in an equal manner and the gasPrice/gasLimit were equal)

Validator rewards collected:
● Validator Pool 1: 0.19 xDai

○ Validator: .0634 xDai (34%) + .075 xDai in transaction fees
○ Delegator 1: .0633 xDai (33%)
○ Delegator 2: .0633 xDai (33%)

● Validator Pool 2: 0.19 xDai
○ Validator = .057 xDai (30%) + .075 xDai in transaction fees
○ Delegator: .133 xDai (70%)

● Validator Pool 3 - 4: 0.19 xDai
○ Validator = 0.19 xDai + .075 xDai in transaction fees

● Validator Pools 5 - 10: 0.19 xDai
○ Validator = 0.19 xDai

v1.9 | 6/16/2021 59

Appendix C: POSDAO / ERC677-to-ERC677 bridge
example scenario
Assumptions:

● Current validators/delegators are elected and have bridged POSDAO (STAKE) tokens
● Weekly inflation rate is 15%/48 for STAKE tokens on the xDai POSDAO chain only
● Bridge entrance fee is 1%, and exit fee is 1%
● The same consensus validators are active for all staking epochs. This is unrealistic, but

allows for simplified calculations.
● The total amount of STAKE ERC677 staked over the month (4 staking epochs) is

18,000, resulting in an additional 56.25 STAKE ERC677 (15 percent of 18000 tokens
divided by 48 weeks) distributed over the course of 1 staking month.

Validator Pool Stakes:
● Validator Pool 1: Validator 1 has 100 STAKE and 2 delegators have 100 STAKE each

(300 total)
● Validator Pool 2: Validator 2 has 100 STAKE and 1 delegator has 300 (400 total)
● Validators Pool 3: Validator 3 has 200 STAKE and 0 delegators (new delegator chooses

this pool)
● Validator Pools 4 -10 start as single entities validators with 500 STAKE each.

A new delegator user wants to join the xDai POSDAO chain and stake some tokens! They
transfer 100 STAKE to the xDai POSDAO chain.

1. 100 STAKE ERC677 are sent to the mainnet bridge contract.
2. 100 STAKE ERC677 are locked in the bridge smart contract.
3. Bridge entrance fee of 1 STAKE ERC677 staking token (1%) is minted on the xDai

POSDAO side and distributed to active validator pools (1 STAKE ERC677 = 0.1 STAKE
ERC677 for each of 10 pools)

4. The remaining 99 STAKE ERC677 are minted via a smart contract on the xDai side and
sent to the delegator’s address.

5. The delegator stakes all 99 STAKE on Validator 3’s pool.
1. The delegator will not receive any rewards for the current staking epoch.

However, in the next staking epoch, the validator 3 pool is elected again and the
delegator starts accruing rewards.

2. The delegator remains with the active validator pool 3 for 4 staking epochs (1
staking month). At the end of the month, the delegator signals for a stake
withdraw.

v1.9 | 6/16/2021 60

1. Over the course of the month, 10,000 additional DPOS tokens were
subject to entrance/exit fees. (There were probably additional delegators
and validators added, and validator set changes, but for simplicity in
example calculations let’s say the validator/delegator sets remained
static). This means 100 STAKE were collected in fees (1%). There are 10
pools, so 10 STAKE were distributed to each validator pool.

2. Over the course of the month, the inflation rate resulted in 56.25
additional STAKE distributed as block rewards. Assuming validator sets
did not change and all validators participated equally, 5.625 STAKE were
distributed to each pool.

3. For Validator pool 3, the delegator had ~33% stake, and a total of
0.1+10+5.625=15.725 tokens were added to the pool. This means the
delegator received ~ 5.19 STAKE ERC677 tokens over the course of the
month.

6. The delegator exits the xDai POSDAO chain with ~ 104.19 STAKE ERC677 tokens
(original 99 + 5.19 in rewards). The bridge smart contract on the xDai side extracts a 1%
exit fee = ~ 1.04 STAKE ERC677. 104.19 STAKE tokens are burnt and 1.04 STAKE
tokens are minted.

7. The bridge exit fee is distributed to the active validator pools (1.04 STAKE ERC677 =
.104 STAKE for each of 10 validators’ pools)

8. 103.15 (104.19 - 1.04) STAKE ERC677 are unlocked in the contract on the mainnet.
This is the delegator’s new balance in STAKE ERC677 tokens.

Total fees extracted from the delegator:
● 1 STAKE ERC677 on bridge entrance
● 1.04 STAKE ERC677 on bridge exit

Validator pool rewards collected (through 1 month, all are approximate and based on
simple assumptions): In this scenario, over the course of 4 staking epochs, each pool
has received:

● 10.1 STAKE ERC677 as bridge exit/entrance fees
● 5.625 STAKE ERC677 as token inflation
● .104 STAKE ERC677 for bridge exit of example delegator

This results in the following approximate distributions:

● Validator Pool 1: 15.829 STAKE ERC677
○ Validator: 5.276 STAKE ERC677 (33.3%)
○ Delegator 1: 5.276 STAKE ERC677(33.3%)

v1.9 | 6/16/2021 61

○ Delegator 2: 5.276 STAKE ERC677 (33.3%)

● Validator Pool 2: 15.829 STAKE ERC677
○ Validator = 4.75 STAKE ERC677 (30%)
○ Delegator: 11.079 STAKE ERC677 (70%)

● Validator Pool 3: 15.829 STAKE ERC677
○ Validator = 10.57 STAKE ERC677 (66.8%)
○ Delegator: 5.259 STAKE ERC677 (33.2%) - does not include .104 exit fee

● Validator Pools 4 - 10: 15.829 STAKE ERC677
○ Validator = 15.829 STAKE ERC677

v1.9 | 6/16/2021 62

Appendix D: DPOS modeling
We modeled behavior of DPOS consensus participants using NetLogo[20]. The model takes
several input parameters which constrain randomized steps of the modeling algorithm:

Basic DPOS parameters:
● the maximum size of the validator set
● the maximum allowed amount of candidates
● the size of the initial validator set
● the minimum amount of candidate stake (expressed in

staking tokens)
● the block reward (BR, expressed in reward tokens)
● the minimum validator reward share, in percents
● other control variables for stepping the model.

Each step of the model represents one staking epoch. The model abstracts away from the
actual duration of a staking epoch. After 56 steps (modeling about a year in real terms assuming
week-long staking epochs) we arrived at the following spread of network participants:

● horizontally with respect to sizes of the staking pools (from 0 for delegators to +infinity)
● vertically with respect to rewards the participants accrued (0 to +infinity).

v1.9 | 6/16/2021 63

It is apparent from the network graph that rewards are assigned to candidates (green and red)
in greater amounts compared to proper delegators (blue). This is mostly due to the fact that
there were more proper delegators (participants that did not become candidates) than
candidates.

Analysis also revealed that participants were rewarded proportionally to the time they spent on
the network:

Additional network statistics

The “participants” chart displays changes through all staking
epochs (from 0 to 56) in numbers of all participants (black),
delegators (blue), all candidates including current validators
(orange), proper candidates excluding current validators (green),
and current validators (red).

The “rewards” chart displays the rewards accrued by participants
in each of these categories.

The “stakes” chart displays the amounts staked by participants in
these categories.

A working model where values can be manually configured is available here.

v1.9 | 6/16/2021 64

https://github.com/poanetwork/posdao-test-setup/blob/master/simulation/README.md

Appendix E: Honey Badger BFT (HBBFT) integration
The Honey Badger BFT (HBBFT) consensus algorithm allows nodes in a distributed, potentially
asynchronous environment to achieve agreement on transactions. The agreement process does
not require a leader node, tolerates corrupted nodes, and makes progress in adverse network
conditions. See the HBBFT github repository for more information.

We are currently integrating HBBFT with the OpenEthereum client to provide an additional
consensus option for POSDAO. Modifications to OpenEthereum include:

● Block agreement process: HBBFT consensus is reached on a proposed list of
transactions before a block is produced. This list is comprised of the union of all (or
most) transactions proposed by the acting validators and each validator creates an
identical block. The block is signed collaboratively using threshold signatures.

● RNG generation: HBBFT can create secure randomness from numbers that are only
revealed after agreement has been reached on their contents. This randomness can be
used to select new validator sets at the beginning of a staking epoch, and as a secure
source of randomness for smart contracts.

● Block validation: Blocks sealed with a threshold signature need to be accepted as
valid. OpenEthereum must keep track of the current validator set in order to match the
threshold signature with the validator set’s master key.

● Block creation: To increase throughput, new blocks can be created as soon as the
transactions for the previous block have been determined, even if the previous block has
not yet been sealed.

● Governance contract interaction: OpenEthereum needs to request the validator set to
determine validator set changes, then use HBBFT to enact these changes.
OpenEthereum should also report malicious validator behavior (fault reporting) to
contracts.

● Validator set changes/key generation: Validator sets are transitioned over several
blocks, and this process requires a set of threshold keys for the new validators, which
must be generated “on-chain” (using a separate smart contract).

● Networking: To communicate efficiently, nodes must exchange low-latency,
high-bandwidth targeted messages. When the validator set changes, new validators
must establish direct connections to one another.

● Network startup: Items must be added to the chain specification so they are included in
the genesis block. This includes compiled governance contracts and the public master
key. In addition, corresponding key shares must be distributed to initial network
validators (this may be accomplished outside of the network) prior to network start.

v1.9 | 6/16/2021 65

https://github.com/poanetwork/hbbft

References
[1] de Vries, A (2018). Bitcoin’s growing energy problem. Joule, 2(5), 801-805.
https://doi.org/10.1016/j.joule.2018.04.016
[2] J. Siim, "Proof-of-stake", Research Seminar in Cryptography, 2017.
https://courses.cs.ut.ee/MTAT.07.022/2017_fall/uploads/Main/janno-report-f17.pdf
[3] Saleh, F. (2018). Blockchain Without Waste: Proof-of-Stake. SSRN Electronic Journal.
10.2139/ssrn.3183935.
[4] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi (2014). Cryptocurrencies without proof of work.
CoRR, abs/1406.5694. https://arxiv.org/pdf/1406.5694.pdf
[5] Buterin, V., and V. Griffith (2017). Casper the Friendly Finality Gadget. CoRR,
https://arxiv.org/abs/1710.09437.
[6] AuRa (Authority Round) Consensus Engine https://openethereum.github.io/Aura
[7] Miller, A., Xia, Y., Croman, K., Shi, E., Song, D. (2016). The Honey Badger of BFT Protocols.
In: Cryptology ePrint Archive 2016/199 https://eprint.iacr.org/2016/199.pdf
[8] D. Larimer (2017). DPOS Consensus Algorithm – The Missing White Paper.
https://steemit.com/dpos/@dantheman/dpos-consensus-algorithm-this-missing-white-paper
[9] V. Buterin (2014). A next-generation smart contract and decentralized application platform.
https://github.com/ethereum/wiki/wiki/White-Paper
[10] Gazi P., Kiayias A., Russell A. (2018). Stake-Bleeding Attacks on Proof-of-Stake
Blockchains. 2018 Crypto Valley Conference on Blockchain Technology (CVCBT), 85-92.
https://allquantor.at/blockchainbib/pdf/gazi2018stake.pdf
[11] “Nothing at stake attack ethereum.” [Online]. Available:
https://github.com/ethereum/wiki/wiki/Problems
[12] Li, W., Andreina, S., Bohli, J., Karame, G. (2017). Securing Proof-of-Stake Blockchain
Protocols. Data Privacy Management, Cryptocurrencies and Blockchain Technology. Springer,
Cham, 297-315.
https://www.researchgate.net/publication/319647471_Securing_Proof-of-Stake_Blockchain_Prot
ocols
[13] Kanjalkar, S., Kuo, J., Yunqi Li, Y. & Miller, A. (2019). Short Paper: I Can’t Believe It’s Not
Stake! Resource Exhaustion Attacks on POS. Financial Cryptography 2019.
http://fc19.ifca.ai/preproceedings/180-preproceedings.pdf
[14] “Fake Stake” attacks on chain-based Proof-of-Stake cryptocurrencies. [Online]. Available:
https://medium.com/@dsl_uiuc/fake-stake-attacks-on-chain-based-proof-of-stake-cryptocurrenci
es-b8b05723f806
[15] Parinya Ekparinya, P., Gramoli, V., Jourjon, G. (2019). The Attack of the Clones against
Proof-of-Authority. https://arxiv.org/abs/1902.10244
[16] Parinya Ekparinya, P., Gramoli, V., Jourjon, G. (2018). Impact of Man-In-The-Middle Attacks
on Ethereum https://doi.org/10.1109/SRDS.2018.00012
[17] Randao: Verifiable Random Number Generation (2017) [Online]. Available:

v1.9 | 6/16/2021 66

https://doi.org/10.1016/j.joule.2018.04.016
https://courses.cs.ut.ee/MTAT.07.022/2017_fall/uploads/Main/janno-report-f17.pdf
https://arxiv.org/pdf/1406.5694.pdf
https://arxiv.org/abs/1710.09437
https://openethereum.github.io/Aura
https://eprint.iacr.org/2016/199.pdf
https://steemit.com/dpos/@dantheman/dpos-consensus-algorithm-this-missing-white-paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://allquantor.at/blockchainbib/pdf/gazi2018stake.pdf
https://allquantor.at/blockchainbib/pdf/gazi2018stake.pdf
https://github.com/ethereum/wiki/wiki/Problems
https://www.researchgate.net/publication/319647471_Securing_Proof-of-Stake_Blockchain_Protocols
https://www.researchgate.net/publication/319647471_Securing_Proof-of-Stake_Blockchain_Protocols
http://fc19.ifca.ai/preproceedings/180-preproceedings.pdf
http://fc19.ifca.ai/preproceedings/180-preproceedings.pdf
https://medium.com/@dsl_uiuc/fake-stake-attacks-on-chain-based-proof-of-stake-cryptocurrencies-b8b05723f806
https://medium.com/@dsl_uiuc/fake-stake-attacks-on-chain-based-proof-of-stake-cryptocurrencies-b8b05723f806
https://arxiv.org/abs/1902.10244
https://doi.org/10.1109/SRDS.2018.00012

https://randao.org/whitepaper/Randao_v0.85_en.pdf
[18] Alturki, M. & Rosu, G. (2018). Statistical Model Checking of RANDAO’s Resilience Against
Pre-computed Reveal Strategies.
https://www.ideals.illinois.edu/bitstream/handle/2142/102076/rdao-analysis.pdf
[19] Gencer, A.E., Basu, S., Eyal, I., van Renesse, R., Sirer, E.G (2018). Decentralization in
Bitcoin and Ethereum Networks. https://arxiv.org/pdf/1801.03998.pdf
[20] NetLogo. https://ccl.northwestern.edu/netlogo/

v1.9 | 6/16/2021 67

https://randao.org/whitepaper/Randao_v0.85_en.pdf
https://www.ideals.illinois.edu/bitstream/handle/2142/102076/rdao-analysis.pdf
https://arxiv.org/pdf/1801.03998.pdf
https://ccl.northwestern.edu/netlogo/

Version Log

Version Date Changes

v1.0 3.29.2019 ● initial specification

v1.1 4.09.2019 ● automatic withdrawal of token orders replaced by manual
token claims [4.5, 9.2.8]

● long range attack solution revised to include reasoning
and link to weak subjectivity [7.1]

● reward distribution code rewritten and optimized [9.2.7]
● threshold for the reportMalicious function increased

from ½ to ⅔ [9.2.6]
● xDai DPOS network parameter constants adjusted to:

1500 MAX_CANDIDATES & 19 MAX_VALIDATORS [9.4]

v1.2 4.29.2019 ● note on paper layout to address different audiences [Intro]
● added MAX_DELEGATORS_PER_POOL parameter in

response to stress testing; it is necessary to limit the
amount of delegators to maintain a 5 second block time in
AuRa [4.1, [9.4]

● clarified snapshotting process which occurs at the end of
each staking epoch [4.2, 9.2.2.5]

● provided additional information around checkpointing to
mitigate a long range attack [7.1]

v1.3 5.20.2019 ● Reference implementation network parameters updated
based on stress testing results in production mode.
MAX_CANDIDATES increased from 1500 to 3000 and
MAX_DELEGATORS_PER_POOL increased from 200 to
3000 [9.4]

v1.4 6.11.2019 ● Explanation and parameters related to native coin staking
(single token) in addition to the dual token environment.

○ _erc20Restricted parameter in
InitializedAuRa contract [9.2.1]

○ Native inflation distribution added [9.2.7.5]
● DPOS_INFLATION_RATE parameter was removed due

to an updated the inflation formula [3]. [Appendix C]
updated with example inflation rate.

● Functionality extended to allow contracts deployment on
an existing AuRa network rather than invocation only on
the genesis block. [9.2.1]

● Various Figures updated to reflect MAX_VALIDATORS =
19.

v1.9 | 6/16/2021 68

● Additional blockRewardContractTransitions spec
option added. [9.3]

v1.5 6.24.2019 ● Additional posdaoTransition spec option added. [9.3]
● AuRa stepDuration spec parameter extended. [9.3]

v1.6 7.22.2019 ● Additional blockGasLimitContract spec option
added. [9.3]

● Value of the COLLECTION_ROUND_LENGTH parameter
decreased from 200 to 114. [9.4]

v1.7 3.30.2020 ● Updated terminology to include OpenEthereum (Rather
than Parity) and STAKE token (rather than generic DPOS
token).

● DPOS ERC20 tokens renamed to POSDAO ERC677
tokens (and ERC20-TO-ERC20 bridge mode changed to
ERC677-TO-ERC677).

● Update image terminology.
● Added qualifier to Equal Block Reward mechanism. If

validators skip blocks their rewards are reduced
accordingly [6.2.2]

● StakingAuRa.claimReward function added (reward
strategy updated from PUSH to PULL, where participants
pull rewards) [9.2.13]

● Pending validator set functionality now uses boolean flag
rather than a queue.
(ValidatorSetAuRa._pendingValidatorsChange
d) [9.2.4]

● Debugging functionality added via
RandomAura.setPunishForReveal function where
punishments may be temporarily removed. [9.2.5]

● Added ERC20-to-Native bridge reward from Dai Savings
Rate [9.2.7.2]

● parity_clearEngineSigner RPC method added
[9.3]

● xDai POSDAO network parameters updated [9.4]

v1.7.1 5.19.2020 ● Update previous Parity wiki links to direct to
OpenEthereum wiki

v1.8 9.25.2020 ● TxPriority contract added [9.1]

v1.9 6.16.2021 ● Added Nethermind Client implementation [1.4]
● Updated 70/30 reward distribution in reference

implementation to straight proportional allocation [3.1.1]
● Added potential implications for tx fee distribution related

v1.9 | 6/16/2021 69

to EIP1559 [3.1.1]

v1.9 | 6/16/2021 70

