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Abstract

In this paper we analyze the mathematical foundations of IOTA, a cryp-
tocurrency for the Internet-of-Things (IoT) industry. The main feature of this
novel cryptocurrency is the tangle, a directed acyclic graph (DAG) for stor-
ing transactions. The tangle naturally succeeds the blockchain as its next
evolutionary step, and offers features that are required to establish a machine-
to-machine micropayment system.

An essential contribution of this paper is a family of Markov Chain Monte
Carlo (MCMC) algorithms. These algorithms select attachment sites on the
tangle for a transaction that has just arrived.

1 Introduction and description of the system

The rise and success of Bitcoin during the last six years proved that blockchain tech-
nology has real-world value. However, this technology also has a number of drawbacks
that prevent it from being used as a generic platform for cryptocurrencies across the
globe. One notable drawback is the concept of a transaction fee for transactions of
any value. The importance of micropayments will increase in the rapidly developing
IoT industry, and paying a fee that is larger than the amount of value being trans-
ferred is not logical. Furthermore, it is not easy to get rid of fees in the blockchain
infrastructure since they serve as an incentive for the creators of blocks. This leads
to another issue with existing cryptocurrency technology, namely the heterogeneous
nature of the system. There are two distinct types of participants in the system, those
who issue transactions, and those who approve transactions. The design of this sys-
tem creates unavoidable discrimination of some participants, which in turn creates
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conflicts that make all elements spend resources on conflict resolution. The afore-
mentioned issues justify a search for solutions essentially different from blockchain
technology, the basis for Bitcoin and many other cryptocurrencies.

In this paper we discuss an innovative approach that does not incorporate blockchain
technology. This approach is currently being implemented as a cryptocurrency called
iota [1], which was designed specifically for the IoT industry. The purpose of this
paper is to focus on general features of the tangle, and to discuss problems that arise
when one attempts to get rid of the blockchain and maintain a distributed ledger.
The concrete implementation of the iota protocol is not discussed.

In general, a tangle-based cryptocurrency works in the following way. Instead
of the global blockchain, there is a DAG that we call the tangle. The transactions
issued by nodes constitute the site set of the tangle graph, which is the ledger for
storing transactions. The edge set of the tangle is obtained in the following way:
when a new transaction arrives, it must approve two1 previous transactions. these
approvals are represented by directed edges, as shown in Figure 12. If there is not
a directed edge between transaction A and transaction B, but there is a directed
path of length at least two from A to B, we say that A indirectly approves B. There
is also the “genesis” transaction, which is approved either directly or indirectly by
all other transactions (Figure 2). The genesis is described in the following way. In
the beginning of the tangle, there was an address with a balance that contained all
of the tokens. The genesis transaction sent these tokens to several other “founder”
addresses. Let us stress that all of the tokens were created in the genesis transaction.
No tokens will be created in the future, and there will be no mining in the sense that
miners receive monetary rewards “out of thin air”.

A quick note on terminology: sites are transactions represented on the tangle
graph. The network is composed of nodes ; that is, nodes are entities that issue and
validate transactions.

The main idea of the tangle is the following: to issue a transaction, users must
work to approve other transactions. Therefore, users who issue a transaction are
contributing to the network’s security. It is assumed that the nodes check if the
approved transactions are not conflicting. If a node finds that a transaction is in
conflict with the tangle history, the node will not approve the conflicting transaction
in either a direct or indirect manner3.

1This is the simplest approach. One may also study similar systems where transactions must
approve k other transactions for a general k ≥ 2, or have an entirely different set of rules.

2Time always increases from left to right in each figure.
3If a node issues a new transaction that approves conflicting transactions, then it risks that other

nodes will not approve its new transaction, which will fall into oblivion.
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As a transaction receives additional approvals, it is accepted by the system with
a higher level of confidence. In other words, it will be difficult to make the system
accept a double-spending transaction. It is important to observe that we do not
impose any rules for choosing which transactions a node will approve. Instead, we
argue that if a large number of nodes follow some “reference” rule, then for any fixed
node it is better to stick to a rule of the same kind4. This seems to be a reasonable
assumption, especially in the context of IoT, where nodes are specialized chips with
pre-installed firmware.

In order to issue a transaction, a node does the following:

• The node chooses two other transactions to approve according to an algorithm.
In general, these two transactions may coincide.

• The node checks if the two transactions are not conflicting, and does not approve
conflicting transactions.

• For a node to issue a valid transaction, the node must solve a cryptographic
puzzle similar to those in the Bitcoin blockchain. This is achieved by finding a
nonce such that the hash of that nonce concatenated with some data from the
approved transaction has a particular form. In the case of the Bitcoin protocol,
the hash must have at least a predefined number of leading zeros.

It is important to observe that the iota network is asynchronous. In general, nodes
do not necessarily see the same set of transactions. It should also be noted that
the tangle may contain conflicting transactions. The nodes do not have to achieve
consensus on which valid5 transactions have the right to be in the ledger, meaning
all of them can be in the tangle. However, in the case where there are conflicting
transactions, the nodes need to decide which transactions will become orphaned6.
The main rule that the nodes use for deciding between two conflicting transactions is
the following: a node runs the tip selection algorithm7 (cf. Section 4.1) many times,
and sees which of the two transactions is more likely to be indirectly approved by the
selected tip. For example, if a transaction was selected 97 times during 100 runs of
the tip selection algorithm, we say that it is confirmed with 97% confidence.

Let us also comment on the following question (cf. [4]): what motivates the nodes
to propagate transactions? Every node calculates some statistics, one of which is

4We comment more on this at the end of Section 4.1
5Transactions that are issued according to the protocol.
6Orphaned transactions are not indirectly approved by incoming transactions anymore
7As mentioned above, there is a good reason to assume that other nodes would follow the same

algorithm for tip selection.
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how many new transactions are received from a neighbor. If one particular node is
“too lazy”, it will be dropped by its neighbors. Therefore, even if a node does not
issue transactions, and hence has no direct incentive to share new transactions that
approve its own transaction, it still has incentive to participate.

After introducing some notation in Section 2, we discuss algorithms for choosing
the two transactions to approve, the rules for measuring the transaction’s overall
approval (Section 3, especially Section 3.1), and possible attack scenarios (Section 4).
Also, in the unlikely event that the reader is scared by the formulas, they can jump
directly to the “conclusions” at the end of each section.

It should be noted that the idea of using DAGs in the cryptocurrency space
has been around for some time, see [3, 6, 7, 9, 12]. Specifically, [7] introduces the
GHOST protocol, which proposes a modification of the Bitcoin protocol by making
the main ledger a tree instead of a blockchain. It is shown that such a modification
reduces confirmation times and improves the overall security of the network. In [9]
the authors consider a DAG-based cryptocurrency model. Their model is different
than our model for the following reasons: the sites of their DAG are blocks instead of
individual transactions; the miners in their system compete for transaction fees; and
new tokens may be created by block miners. Also, observe that a solution somewhat
similar to ours was proposed in [6], although it does not discuss any particular tip
approval strategies. After the first version of this paper was published, several other
works that aim to create a DAG-based distributed ledger have appeared, e.g. [8]. We
also reference another approach [2, 10] that aims to make Bitcoin micropayments
possible by establishing peer-to-peer payment channels.

2 Weights and more

In this section we define the weight of a transaction, and related concepts. The
weight of a transaction is proportional to the amount of work that the issuing node
invested into it. In the current implementation of iota, the weight may only assume
values 3n, where n is a positive integer that belongs to some nonempty interval of
acceptable values8. In fact, it is irrelevant to know how the weight was obtained in
practice. It is only important that every transaction has a positive integer, its weight,
attached to it. In general, the idea is that a transaction with a larger weight is more
“important” than a transaction with a smaller weight. To avoid spamming and other
attack styles, it is assumed that no entity can generate an abundance of transactions
with “acceptable” weights in a short period of time.

8This interval should also be finite — see the “large weight attack” in Section 4.
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One of the notions we need is the cumulative weight of a transaction: it is defined
as the own weight of a particular transaction plus the sum of own weights of all
transactions that directly or indirectly approve this transaction. The algorithm for
cumulative weight calculation is illustrated in Figure 1. The boxes represent trans-
actions, the small number in the SE corner of each box denotes own weight, and the
bold number denotes the cumulative weight. For example, transaction F is directly
or indirectly approved by transactions A,B,C,E. The cumulative weight of F is
9 = 3 + 1 + 3 + 1 + 1, which is the sum of the own weight of F and the own weights
of A,B,C,E.

Let us define “tips” as unapproved transactions in the tangle graph. In the top
tangle snapshot of Figure 1, the only tips are A and C. When the new transaction X
arrives and approves A and C in the bottom tangle snapshot, X becomes the only
tip. The cumulative weight of all other transactions increases by 3, the own weight
of X.

We need to introduce two additional variables for the discussion of approval algo-
rithms. First, for a transaction site on the tangle, we introduce its

• height : the length of the longest oriented path to the genesis;

• depth: the length of the longest reverse-oriented path to some tip.

For example, G has height 1 and depth 4 in Figure 2 because of the reverse path
F,D,B,A, while D has height 3 and depth 2. Also, let us introduce the notion of
the score. By definition, the score of a transaction is the sum of own weights of
all transactions approved by this transaction plus the own weight of the transaction
itself. In Figure 2, the only tips are A and C. Transaction A directly or indirectly
approves transactions B,D, F,G, so the score of A is 1+3+1+3+1 = 9. Analogously,
the score of C is 1 + 1 + 1 + 3 + 1 = 7.

In order to understand the arguments presented in this paper, one may safely
assume that all transactions have an own weight equal to 1. From now on, we stick
to this assumption. Under this assumption, the cumulative weight of transaction X
becomes 1 plus the number of transactions that directly or indirectly approve X, and
the score becomes 1 plus the number of transactions that are directly or indirectly
approved by X.

Let us note that, among those defined in this section, the cumulative weight is
(by far!) the most important metric, although height, depth, and score will briefly
enter some discussions as well.
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Figure 1: DAG with weight assignments before and after a newly issued transac-
tion, X. The boxes represent transactions, the small number in the SE corner of each
box denotes own weight, and the bold number denotes the cumulative weight.
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Figure 2: DAG with own weights assigned to each site, and scores calculated for
sites A and C.

3 Stability of the system, and cutsets

Let L(t) be the total number of tips in the system at time t. One expects that the
stochastic process L(t) remains stable9. More precisely, one expects the process to be
positive recurrent, see Sections 4.4 and 6.5 of [11] for formal definitions. In particular,
positive recurrence implies that the limit of P[L(t) = k] as t → ∞ should exist and
be positive for all k ≥ 1. Intuitively, we expect that L(t) should fluctuate around a
constant value, and not escape to infinity. If L(t) were to escape to infinity, many
unapproved transactions would be left behind.

To analyze the stability properties of L(t), we need to make some assumptions.
One assumption is that transactions are issued by a large number of roughly indepen-
dent entities, so the process of incoming transactions can be modeled by a Poisson
point process (cf. e.g. Section 5.3 of [11]). Let λ be the rate of that Poisson process.
For simplicity, let us assume that this rate remains constant in time. Assume that
all devices have approximately the same computing power, and let h be the average
time a device needs to perform calculations that are required to issue a transaction.
Then, let us assume that all nodes behave in the following way: to issue a transac-
tion, a node chooses two tips at random and approves them. It should be observed
that, in general, it is not a good idea for the “honest nodes” to adopt this strategy
because it has a number of practical disadvantages. In particular, it does not offer
enough protection against “lazy” or malicious nodes (see Section 4.1 below). On the
other hand, we still consider this model since it is simple to analyze, and may provide
insight into the system’s behavior for more complicated tip selection strategies.

9Under an additional assumption that the process is time-homogeneous.

7



Next, we make a further simplifying assumption that any node, at the moment
when it issues a transaction, observes not the actual state of the tangle, but the one
exactly h time units ago. This means, in particular, that a transaction attached to the
tangle at time t only becomes visible to the network at time t+h. We also assume that
the number of tips remains roughly stationary in time, and is concentrated around a
number L0 > 0. In the following, we will calculate L0 as a function of λ and h.

Observe that, at a given time t we have roughly λh “hidden tips” (which were
attached in the time interval [t−h, t) and so are not yet visible to the network); also,
assume that typically there are r “revealed tips” (which were attached before time
t−h and remain tips at time t), so L0 = r+λh. By stationarity, we may then assume
that at time t there are also around λh sites that were tips at time t − h, but are
not tips anymore. Now, think about a new transaction that comes at this moment;
then, a transaction it chooses to approve is a tip with probability r/(r + λh) (since
there are around r tips known to the node that issued the transaction, and there are
also around λh transactions which are not tips anymore, although that node thinks
they are), so the mean number of chosen tips is 2r/(r + λh). The key observation is
now that, in the stationary regime, this mean number of chosen tips should be equal
to 1, since, in average, a newcoming transaction should not change the number of
tips. Solving the equation 2r/(r + λh) = 1 with respect to r, we obtain r = λh, and
so

L0 = 2λh. (1)

We also note that, if the rule is that a new transaction references k transactions
instead of 2, then a similar calculation gives

L
(k)
0 =

kλh

k − 1
. (2)

This is, of course, consistent with the fact that L
(k)
0 should tend to λh as k → ∞

(basically, the only tips would be those still unknown to the network).
Also (we return to the case of two transactions to approve) the expected time for

a transaction to be approved for the first time is approximately h+L0/2λ = 2h. This
is because, by our assumption, during the first h units of time a transaction cannot
be approved, and after that the Poisson flow of approvals to it has rate approximately
2λ/L0. (Recall Proposition 5.3 of [11], which says that if we independently classify
each event of a Poisson process according to a list of possible subtypes, then the
processes of events of each subtype are independent Poisson processes.)

Observe that10 at any fixed time t the set of transactions that were tips at some

10At least in the case where the nodes try to approve tips.
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moment s ∈ [t, t+ h(L0, N)] typically constitutes a cutset. Any path from a transac-
tion issued at time t′ > t to the genesis must pass through this set. It is important
that the size of a new cutset in the tangle occasionally becomes small. One may then
use the small cutsets as checkpoints for possible DAG pruning and other tasks.

It is important to observe that the above “purely random” approval strategy is
not very good in practice because it does not encourage approving tips. A “lazy” user
could always approve a fixed pair of very old transactions, therefore not contributing
to the approval of more recent transactions, without being punished for such behav-
ior11. Also, a malicious entity can artificially inflate the number of tips by issuing
many transactions that approve a fixed pair of transactions. This would make it pos-
sible for future transactions to select these tips with very high probability, effectively
abandoning the tips belonging to “honest” nodes. To avoid issues of this sort, one
has to adopt a strategy that is biased towards the “better” tips. One example of such
a strategy is presented in Section 4.1 below.

Before starting the discussion about the expected time for a transaction to receive
its first approval, note that we can distinguish two regimes (Figure 3).

• Low load: the typical number of tips is small, and frequently becomes 1. This
may happen when the flow of transactions is so small that it is not probable
that several different transactions approve the same tip. Also, if the network
latency is very low and devices compute fast, it is unlikely that many tips
would appear. This even holds true in the case when the flow of transactions
is reasonably large. Moreover, we have to assume that there are no attackers
that try to artificially inflate the number of tips.

• High load: the typical number of tips is large. This may happen when the
flow of transactions is large, and computational delays together with network
latency make it likely that several different transactions approve the same tip.

This division is rather informal, and there is no clear borderline between the the
two regimes. Nevertheless, we find that it may be instructive to consider these two
different extremes.

The situation in the low load regime is relatively simple. The first approval
happens on an average timescale of order λ−1 since one of the first few incoming
transactions will approve a given tip.

Let us now consider the high load regime, the case where L0 is large. As men-
tioned above, one may assume that the Poisson flows of approvals to different tips are

11We remind the reader that we do not try to enforce any particular tip selection strategy. An
attacker can choose tips in any way they find convenient.
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Figure 3: Low load (top) and high load (bottom) regimes of incoming transaction
flow. White squares represent verified sites, while gray squares represent tips.

independent and have an approximate rate of 2λ/L0. Therefore, the expected time
for a transaction to receive its first approval is around L0/(2λ) = h (recall (1)).

However, it is worth noting that for more elaborate approval strategies12, it may
not be a good idea to passively wait a long time until a transaction is approved by
the others. This is due to the fact that “better” tips will keep appearing and will be
preferred for approval. Rather, in the case when a transaction is waiting for approval
over a time interval much larger than L0/2λ, a good strategy would be to promote
this latent transaction with an additional empty transaction13. In other words, a
node can issue an empty transaction that approves its previous transaction together
with one of the “better” tips to increase the probability that the empty transaction
receives approval.

It turns out that the approval strategies based on heights and scores may be
vulnerable to a specific type of attacks, see Section 4.1. We will discuss more elaborate
strategies14 to defend against such attacks in that section. In the meantime, it is still

12That favor “better” quality tips in future implementations of iota.
13An empty transaction is a transaction that does not involve any token transfer, but still has to

approve two other transactions. It should be noted that generating an empty transaction contributes
to the network’s security.

14In fact, the author’s feeling is that the tip approval strategy is the most important ingredient for
constructing a tangle-based cryptocurrency. It is there that many attack vectors are hiding. Also,
since there is usually no way to enforce a particular tip approval strategy, it must be such that the
nodes would voluntarily choose to follow it knowing that at least a good proportion of other nodes
does so.
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worth considering the simple tip selection strategy where an incoming transaction
approves two random tips. This strategy is the easiest to analyze, and therefore may
provide some insight into the qualitative and quantitative behavior of the tangle.

Conclusions:

1. We distinguish between two regimes, low load and high load (Figure 3).

2. There are only a few tips in the low load regime. A tip gets approved for the
first time in Θ(λ−1) time units, where λ is the rate of the incoming flow of
transactions.

3. In the high load regime the typical number of tips depends on the tip approval
strategy employed by the new transaction.

4. If a transaction uses the strategy of approving two random tips, the typical
number of tips is given by (1). It can be shown that this strategy is optimal
with respect to the typical number of tips. However, it is not practical to adopt
this strategy because it does not encourage approving tips.

5. More elaborate strategies are needed to handle attacks and other network issues.
A family of such strategies is discussed in Section 4.1.

6. The typical time for a tip to be approved is Θ(h) in the high load regime,
where h is the average computation/propagation time for a node. However, if
the first approval does not occur in the above time interval, it is a good idea
for the issuer and/or receiver to promote that transaction with an additional
empty transaction.

3.1 How fast does the cumulative weight typically grow?

Assume that the network is in the low load regime. After a transaction gets ap-
proved several times, its cumulative weight will grow with speed λ because all new
transactions will indirectly reference this transaction15.

In the case where the network is in the high load regime, an old transaction with
a large cumulative weight will experience weight growth with speed λ because essen-
tially all new transactions will indirectly reference it. Moreover, when the transaction

15Recall that we assumed that the own weights of all transactions are equal to 1, so the cumulative
weight is just the number of transactions that directly or indirectly reference a transaction plus 1.
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is first added to the tangle it may have to wait for some time to be approved. In this
time interval, the transaction’s cumulative weight behaves in a random fashion. To
characterize the speed with which the cumulative weight grows after the transaction
receives several approvals, let us define H(t) as the expected cumulative weight at
time t (for simplicity, we start counting time at the moment when our transaction
was revealed to the network, i.e., h time units after it was created) and K(t) as the
expected number of tips that approve the transaction at time t. Let us also abbre-
viate h := h(L0, N). We make a simplifying assumption that the number of tips
remains roughly constant at a value of L0 over time. We work with the “approve two
random tips” strategy in this section. It is expected that the qualitative behavior
will be roughly the same for other reasonable strategies.

Recall that a transaction entering the network at time t typically chooses two tips
to approve based on the state of the system at time t− h because the node must do
some calculations and verifications before actually issuing the transaction. It is not
difficult to see that (assuming, though, that K(·) is the actual number of tips, not
just expected number) the probability of the transaction approving at least one of

“our” tips in the tangle is 1 −
(
1 − K(t−h)

L0

)2
= K(t−h)

L0

(
2 − K(t−h)

L0

)
16. Analogous to

Example 6.4 of [11], we can write for small δ > 0

H(t+ δ) = H(t) + λδ
K(t− h)

L0

(
2− K(t− h)

L0

)
+ o(δ),

and thus deduce the following differential equation

dH(t)

dt
= λ

K(t− h)

L0

(
2− K(t− h)

L0

)
. (3)

In order to be able to use (3), we need to first calculate K(t). This is not a trivial
task since a tip at time t − h may not be a tip at time t, and the overall number of
tips approving the original transaction increases by 1 in the case where an incoming
transaction approves such a tip. The crucial observation is that the probability that
a tip at time t − h remains a tip at time t is approximately 1/2. (To verify this,
recall the discussion from Section 3: the typical number of tips is 2λh, and during
the interval of length h new λh tips will substitute a half of old ones.) Therefore,
at time t approximately one half K(t− h) tips remain in the unconfirmed tip state,
while the other half will have received at least one approval. Let A denote the set
of K(t − h)/2 tips at time t − h that are still tips at time t, and let B denote the

16The expression on the left-hand side is 1 minus the probability that the two approved tips are
not ours.
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remaining set of K(t − h)/2 tips that were already approved by time t. Let p1 be
the probability that a new transaction approves at least 1 transaction from B and
does not approve any transactions from A. Furthermore, let p2 be the probability
that both approved transactions belong to A. In other words, p1 and p2 are the
probabilities that the current number of “our” tips increases or decreases by 1 upon
arrival of the new transaction. We have

p1 =
(K(t− h)

2L0

)2
+ 2× K(t− h)

2L0

(
1− K(t− h)

L0

)
,

p2 =
(K(t− h)

2L0

)2
.

To obtain the first expression, observe that p1 equals the probability that both ap-
proved tips belong to B plus twice the probability that the first tip belongs to B and
the second tip does not belong to A ∪B. Analogous to (3), the differential equation
for K(t) is:

dK(t)

dt
= (p1 − p2)λ = λ

K(t− h)

L0

(
1− K(t− h)

L0

)
. (4)

It is difficult to solve (4) exactly, so we make further simplifying assumptions. First
of all, we observe that after the time when K(t) reaches level εL0 for a fixed ε > 0,
it will grow very quickly to (1 − ε)L0. Now, when K(t) is small with respect to L0,
we can drop the last factor in the right-hand side of (4)17. We obtain a simplified
version of (4) by recalling that λh

L0
= 1

2
:

dK(t)

dt
≈ 1

2h
K(t− h), (5)

with boundary condition K(0) = 1. We look for a solution of the form K(t) =
exp(c t

h
); after substituting this into (5), we obtain

c

h
exp

(
c
t

h

)
≈ 1

2h
exp

(
c
t

h
− c
)
,

therefore

K(t) = exp
(
W
(
1
2

) t
h

)
≈ exp

(
0.352

t

h

)
(6)

is an approximate solution, whereW (·) is the so-called LambertW -function.18 Taking
the logarithm of both sides in (6), we find that the time when K(t) reaches εL0 is

17It would be a constant close to 1, so the right-hand side would be equivalent to λK(t−h)
L0

.
18Also known as the omega function or product logarithm; for x ∈ [0,+∞) it is characterized by

the relation x = W (x) exp(W (x)).
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Figure 4: Plot of cumulative weight vs. time for the high load regime.

roughly

t0 ≈
h

W
(
1
2

) × ( lnL0 − ln ε−1
)
. 2.84 · h lnL0. (7)

Returning to (3) and dropping the last term on the right-hand side, we obtain that
during the “adaptation period” (i.e., t ≤ t0 with t0 as in (7)), it holds that

dH(t)

dt
≈ 2λ

L0

K(t− h)

≈ 1

h exp
(
W (1

2
)
) exp

(
W
(
1
2

) t
h

)
=

2W
(
1
2

)
h

exp
(
W
(
1
2

) t
h

)
and therefore

H(t) ≈ 2 exp
(
W
(
1
2

) t
h

)
≈ 2 exp

(
0.352

t

h

)
. (8)

Let us also remind the reader that after the adaptation period, the cumulative
weight H(t) grows linearly with speed λ. We stress that the “exponential growth”
in (8) does not mean that the cumulative weight grows “very quickly” during the
adaptation period. Rather, the behavior is as depicted in Figure 4.
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Conclusions:

1. After a transaction gets approved multiple times in the low load regime, its
cumulative weight will grow with speed λw, where w is the mean weight of a
generic transaction.

2. In the high load regime, there are two distinct growth phases. First, a transac-
tion’s cumulative weight H(t) grows with increasing speed during the adapta-
tion period according to (8). After the adaptation period is over, the cumulative
weight grows with speed λw (Figure 4). In fact, for any reasonable strategy
the cumulative weight will grow with this speed after the end of the adaptation
period because all incoming transactions will indirectly approve the transaction
of interest.

3. One can think of the adaptation period of a transaction as the time until most
of the current tips indirectly approve that transaction. The typical length of
the adaptation period is given by (7).

4 Possible attack scenarios

We start by discussing an attack scenario where the attacker tries to “outpace” the
network alone:

1. An attacker sends a payment to a merchant and receives the goods after the
merchant decides the transaction has a sufficiently large cumulative weight.

2. The attacker issues a double-spending transaction.

3. The attacker uses their computing power to issue many small transactions that
approve the double-spending transaction, but do not approve the original trans-
action that they sent to the merchant either directly or indirectly.

4. It is possible for the attacker to have a plethora of Sybil identities which are
not required to approve tips.

5. An alternative method to item 3 would be for the attacker to issue a big double-
spending transaction using all of their computing power. This transaction would
have a very large own weight19, and would approve transactions prior to the
legitimate transaction used to pay the merchant.

19Here we assume that the own weight of a transaction may vary. It will become clear in the
discussion below why it is a good idea to let the own weight vary.
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legitimate transaction

double-spending

Figure 5: The “large weight” attack

6. The attacker hopes that their dishonest subtangle outpaces the honest sub-
tangle. If this happens, the main tangle continues growing from the double-
spending transaction, and the legitimate branch with the original payment to
the merchant is orphaned (Figure 5).

In fact, it can be shown that the strategy of one large double-spending transaction
increases the attacker’s chances of being successful. In the “ideal” situation of this
mathematical model, this attack always succeeds.

Let W (n) be the time needed to obtain a nonce that gives the double-spending
transaction a weight of at least 3n. One may assume that W (n) is an exponentially dis-
tributed random variable with parameter20 µ3−n, where µ represents the computing
power of the attacker.

Assume that the merchant accepts the legitimate transaction when its cumulative
weight becomes at least w0, which happens t0 time units after the original transaction.
It is reasonable to expect that the cumulative weight grows with linear speed λw,
where λ is the overall arrival rate of transactions issued on the network by honest
nodes, and w is the mean weight of a generic transaction. The typical total weight
of the legitimate branch at that time is w1 = λwt0.

Let dxe be the smallest integer greater than or equal to x, define n0 =
⌈
lnw1

ln 3

⌉
, so

that 3n0 ≥ w1
21. If the attacker managed to obtain a nonce that gives the double-

spending transaction a weight of at least 3n0 during the time interval of length t0,
then the attack succeeds. The probability of this event is

P[W (n0) < t0] = 1− exp(−t0µ3−n0) ≈ 1− exp(−t0µw−11 ) ≈ t0µ

w1

.

20With expectation µ−13n.
21In fact, 3n0 ≈ w1 if w1 is large.
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This approximation is true in the case where t0µ
w1

is small, which is a reasonable as-
sumption. If this “immediate” attack does not succeed, the attacker may continue to
look for the nonce that gives weight 3n for n > n0, and hope that at the moment they
find it, the total weight of the legitimate branch is smaller than 3n. The probability
of this event occurring is

P[λwW (n) < 3n] = 1− exp
(
− µ3−n0 × (3n0/λw)

)
= 1− exp(−µ/λw) ≈ µ

λw
.

That is, although µ
λw

should typically be a small number, at each “level” n the attack
succeeds with a constant probability. Therefore, it will a.s. succeed. The typical

time until it succeeds is roughly 3
λw
µ . Although this quantity may be very large, the

probability that the “first”22 attack succeeds is not negligible. Therefore, we need
countermeasures. One such countermeasure would be limiting the own weight from
above, or even setting it to a constant value. As mentioned in Section 3, the latter
may not be the best solution because it does not offer enough protection from spam.

Now, let us discuss the situation where the maximum own weight is capped at a
value of 1, and estimate the probability that the attack succeeds.

Assume that a given transaction gained cumulative weight w0 in t0 time units
after the moment when it was issued, and that the adaptation period for that trans-
action is over. In this situation, the transaction’s cumulative weight increases linearly
with speed λ. Now, imagine that the attacker wants to double-spend on this trans-
action. To do so, the attacker secretly prepares the double-spending transaction, and
starts generating nonsense transactions that approve the double-spending transac-
tion at the time23 when the original transaction was issued to the merchant. If the
attacker’s subtangle outpaces the legitimate subtangle at some moment after the mer-
chant decides to accept the legitimate transaction, then the double-spending attack
would be successful. If that does not happen, then the double-spending transaction
would not be approved by others because the legitimate transaction would acquire
more cumulative weight and essentially all new tips would indirectly approve it. The
double-spending transaction would be orphaned in this scenario.

As before, let µ stand for the computing power of the attacker. We also make a
simplifying assumption that the transactions propagate instantly. Let G1, G2, G3, . . .
denote i.i.d. exponential random variables with parameter µ24, and define Vk = µGk,
k ≥ 1. It follows that V1, V2, V3, . . . are i.i.d. exponential random variables with
parameter 1.

22During the time t0.
23Or even before; we discuss this case later.
24With expected value 1/µ.
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Suppose that at time t0 the merchant decides to accept the transaction with
cumulative weight w0. Let us estimate the probability that the attacker successfully
double-spends. Let M(θ) = (1 − θ)−1 be the moment generating function of the
exponential distribution with parameter 1 (Section 7.7 of [14]). It is known25 that
for α ∈ (0, 1) it holds that

P
[ n∑
k=1

Vk ≤ αn
]
≈ exp

(
− nϕ(α)

)
, (9)

where ϕ(α) = − lnα+α− 1 is the Legendre transform of lnM(θ). As a general fact,
it holds that ϕ(α) > 0 for α ∈ (0, 1). Recall that the expectation of an exponential
random variable with parameter 1 also equals 1.

Assume that µt0
w0

< 1, otherwise the probability that the attacker’s subtangle even-
tually outpaces the legitimate subtangle would be close to 1. Now, to outweigh w0 at
time t0, the attacker needs to be able to issue at least w0 transactions with maximum
own weight m during time t0. Therefore, using (9), we find the probability that the
double-spending transaction has more cumulative weight at time t0 is roughly

P
[ w0/m∑
k=1

Gk < t0

]
= P

[ w0∑
k=1

Vk < µt0

]
= P

[ w0∑
k=1

Vk < w0 ×
µt0
w0

]
≈ exp

(
− w0ϕ

(
µt0
w0

))
. (10)

For the above probability to be small, w0

m
needs to be large and ϕ

(
µt0
w0

)
cannot be very

small.
Note that, at time t ≥ t0, the cumulative weight of the legitimate transaction is

roughly w0 +λ(t− t0) because we assumed that the adaptation period is over, so the
cumulative weight grows with speed λ. Analogous to (10), one finds the probability
that the double-spending transaction has more cumulative weight at time t ≥ t0 is
roughly

exp
(
− (w0 + λ(t− t0))ϕ

(
µt

w0+λ(t−t0)

))
. (11)

Then, it must be true that we have µt0
w0
≥ µ

λ
since the cumulative weight grows with

speed less than λ during the adaptation period. It can be shown that the probability

25This is a consequence of the so-called Large Deviation Principle. See the general book [13], and
Proposition 5.2 in Section 8.5 of [14] for a simple and instructive derivation of the upper bound, and
Section 1.9 of [5] for the (not so simple) derivation of the lower bound.
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of achieving a successful double spend is of order

exp
(
− w0ϕ

(
max(µt0

w0
, µ
λ
)
))
. (12)

For example, let µ = 2, λ = 3 so that the attacker’s power is only a bit less than
that of the rest of the network. Assume that the transaction has a cumulative weight
of 32 by time 12. Then, max(µt0

w0
, µ
λ
) = 3

4
, ϕ
(
3
4

)
≈ 0.03768, and (12) then gives the

upper bound approximately 0.29. If one assumes that µ = 1 and keeps all other pa-
rameters intact, then max(µt0

w0
, µ
λ
) = 3

8
, ϕ
(
3
8

)
≈ 0.3558, and (12) gives approximately

0.00001135, quite a drastic change.
From the above discussion it is important to recognize that the inequality λ > µ

should be true for the system to be secure. In other words, the input flow of “hon-
est” transactions should be large compared to the attacker’s computational power.
Otherwise, the estimate (12) would be useless. This indicates the need for addi-
tional security measures, such as checkpoints, during the early days of a tangle-based
system.

When choosing a strategy for deciding which one of two conflicting transactions
is valid, one has to be careful when using cumulative weight as a decision metric.
This is due to the fact that cumulative weight can be subject to an attack similar
to the one described in Section 4.1, namely the attacker may prepare a double-
spending transaction well in advance, build a secret subtangle referencing it, and
then broadcast that subtangle after the merchant accepts the legitimate transaction.
A better method for deciding between two conflicting transactions might be the one
described in the next section: run the tip selection algorithm and see which of the
two transactions is indirectly approved by the selected tip.

4.1 A parasite chain attack and a new tip selection algorithm

Consider the following attack (Figure 6): an attacker secretly builds a subtangle that
occasionally references the main tangle to gain a higher score. Note that the score
of honest tips is roughly the sum of all own weights in the main tangle, while the
score of the attacker’s tips also contains the sum of all own weights in the parasite
chain. Since network latency is not an issue for an attacker who builds a subtangle
alone26, they might be able to give more height to the parasite tips if they use a
computer that is sufficiently strong. Moreover, the attacker can artificially increase
their tip count at the moment of the attack by broadcasting many new transactions

26This is due to the fact that an attacker can always approve their own transactions without
relying on any information from the rest of the network.
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that approve transactions that they issued earlier on the parasite chain (Figure 6).
This will give the attacker an advantage in the case where the honest nodes use some
selection strategy that involves a simple choice between available tips.

To defend against this attack style, we are going to use the fact that the main
tangle is supposed to have more active hashing power than the attacker. Therefore,
the main tangle is able to produce larger increases in cumulative weight for more
transactions than the attacker. The idea is to use a MCMC algorithm to select the
two tips to reference.

Let Hx be the current cumulative weight of a site. Recall that we assumed all
own weights are equal to 1. Therefore, the cumulative weight of a tip is always 1,
and the cumulative weight of other sites is at least 2.

The idea is to place some particles, a.k.a. random walkers, on sites of the tangle
and let them walk towards the tips in a random27 way. The tips “chosen” by the walks
are then the candidates for approval. The algorithm is described in the following way:

1. Consider all sites on the interval [W, 2W ], where W is reasonably large28.

2. Independently place N particles on sites in that interval29.

3. Let these particles perform independent discrete-time random walks “towards
the tips”, meaning that a transition from x to y is possible if and only if y
approves x

4. The two random walkers that reach the tip set first will sit on the two tips that
will be approved. However, it may be wise to modify this rule in the following
way: first discard those random walkers that reached the tips too fast because
they may have ended on one of the “lazy tips”.

5. The transition probabilities of the walkers are defined in the following way:
if y approves x (y  x), then the transition probability Pxy is proportional to

27There is not a “canonical” source of randomness. The nodes just use their own (pseudo)random
number generators to simulate the random walks.

28The idea is to place the particle “deep” into the tangle so that it will not arrive at a tip straight
away. However, the particle should not be placed “too deep” because it needs to find a tip in a
reasonable time. Also, the interval [W, 2W ] is arbitrary. One could chose [W, 5W ], etc. There are
also other ways to select the walkers’ starting points. For example, a node can simply take a random
transaction received between t0 and 2t0 time units in the past, where t0 is some fixed time point.

29This choice is largely arbitrary. We use several particles instead of just two for additional
security. The idea is that if a particle were to accidentally jump to the attacker’s chain, which is
supposed to be long, then it would spend a lot of time there and other tips will be chosen first.
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main tangle

parasite chain

good tips

lazy tips

Figure 6: Visual representation of the tip selection algorithm for honest tips, as well
as the parasite chain. The two red circles indicate an attempted double-spend by an
attacker.

exp
(
− α(Hx −Hy)

)
, that is

Pxy = exp
(
− α(Hx −Hy)

)( ∑
z:z x

exp
(
− α(Hx −Hz)

))−1
, (13)

where α > 0 is a parameter to be chosen30.

Note that this algorithm is “local”, meaning one does not need to traverse the tangle
back to the genesis to perform relevant calculations. In particular, observe that one
does not need to calculate the cumulative weights for the whole tangle. At most one
needs to calculate the cumulative weights for the sites that indirectly approve the
starting point of the walker.

To check that the algorithm works as intended, first consider the “lazy tips”.
These tips intentionally approve some old transactions to avoid doing verification
work (Figure 6). Even if the particle is on a site approved by a lazy tip, it is not
probable that the lazy tip would be selected because the difference between cumulative
weights would be very large and Pxy would be small.

Next, consider this alternate attack style: the attacker secretly builds a chain
containing a transaction that empties their account balance to another account under
their control, indicated as the leftmost red circle in Figure 6. Then, the attacker issues
a transaction on the main tangle, represented by the rightmost red circle, and waits
for the merchant to accept it. The parasite chain occasionally references the main

30One can start with α = 1.
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tangle. However, the cumulative weight is not very large in the parasite chain. It
should be noted that the parasite chain cannot reference the main tangle after the
merchant’s transaction. Furthermore, the attacker might try to artificially inflate the
number of tips in their parasite chain at the moment of the attack (Figure 6). The
attacker’s idea is to make the nodes issuing new transactions reference the parasite
chain so that the honest branch of the tangle will be orphaned.

It is easy to see why the MCMC selection algorithm will not select one of the at-
tacker’s tips with high probability. The reasoning is identical to the lazy tip scenario:
the sites on the parasite chain will have a cumulative weight that is much smaller
than the sites that they reference on the main tangle. Therefore, it is not probable
that the random walker will ever jump to the parasite chain unless it begins there,
and this event is not very probable either because the main tangle contains more
sites.

As an additional protecting measure, we can first run a random walk with a
large α (so that it is in fact “almost deterministic”) to choose a “model tip”; then,
use random walks with small α for actual tip selection, but verify if the (indirectly)
referenced transactions are consistent with the model tip.

Observe also that, for a random walk that always moves towards the tips it is very
simple and rapid to calculate the exit probability distribution using a straightforward
recursion; this is something that we do not want the nodes to do. However, it is
possible to modify our approach in the following way: on each step, the random
walk may backtrack (i.e., go 1 step away from the tips) with probability (say) 1

3
(and

divide the remaining 2
3

as before). The walk will reach the tips very quickly anyway
(because it has a drift towards the tips), but it will not be so easy to calculate the
exit measure.

Let us comment on why the nodes would follow this algorithm. Recall from
Section 1 that it is reasonable to assume that at least a “good” proportion of the
nodes will follow the reference algorithm. Also, because of computational and network
delays, the tip selection algorithm would rather work with a past snapshot of the
tangle with respect to the moment when a transaction is issued. It may be a good
idea to intentionally move this snapshot to a time point further in the past31 in the
reference algorithm for the reasons that we explain in the sequel. Imagine a “selfish”
node that just wants to maximize the chances of their transaction being approved
quickly. The MCMC algorithm of this section, which is adopted by a considerable
proportion of nodes, defines a probability distribution on the set of tips. It is clear that

31First the random walker finds a former tip with respect to that snapshot, and then it continues
to walk towards the “actual” tips on the current tangle.
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a natural first choice for a selfish node would be to choose the tips where the maximum
of that distribution is attained. However, if many other nodes also behave in a selfish
way and use the same strategy, which is a reasonable assumption, then they all will
lose. Many new transactions will approve the same two tips at roughly the same time,
therefore generating too much competition between them for subsequent approval.
It should also be clear that nodes will not immediately “feel” the cumulative weight
increase caused by this mass approval of the same two tips since the nodes are using a
past snapshot. For this reason, even a selfish node would have to use some random tip
approval algorithm32 with a probability distribution for tip selection that is close to
the default probability distribution produced by the reference tip selection algorithm.
We do not claim that this “aggregated” probability distribution would be equal to
the default probability distribution in the presence of selfish nodes. However, the
above argument shows that it should be close to it. This means that the probability
of many nodes attempting to verify the same “bad” tips would remain small. In any
case, there is not a large incentive for the nodes to be selfish because possible gains
only amount to a slight decrease in confirmation time. This is inherently different
from other decentralized constructs, such as Bitcoin. The important fact is that nodes
do not have reasons to abandon the MCMC tip selection algorithm.

We would like to mention that the definition of transition probabilities, as given
in (13), has not been set in stone. Instead of the exponent, one can use a different
function that decreases rapidly, such f(s) = s−3. There is also freedom for choosingW
andN as well. At this point in time, it is unclear if there are any theoretical arguments
that show exactly in which way these parameters should be chosen. In sum, we feel
that the main contribution of this section is the idea of using MCMC for tip selection.

4.2 Splitting attack

Aviv Zohar suggested the following attack scheme against the proposed MCMC al-
gorithm. In the high-load regime, an attacker can try to split the tangle into two
branches and maintain the balance between them. This would allow both branches
to continue to grow. The attacker must place at least two conflicting transactions

32as noticed before, for a backtracking walk there seem to be no easy way to discover which tips
are better (that is, more likely to be selected by “honest” nodes) other than running the MCMC
many times. However, running MCMC many times requires time and other resources; after one
spends some time on it, the state of the tangle will already change, so one would possibly even have
to start anew. This explains why nodes do not have reasons to abandon the MCMC tips selection
strategy in favor of something else, at least if they assume that a considerable proportion of the
other nodes follow the default tips selection strategy.
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at the beginning of the split to prevent an honest node from effectively joining the
branches by referencing them both simultaneously. Then, the attacker hopes that
roughly half of the network would contribute to each branch so that they would be
able to “compensate” for random fluctuations, even with a relatively small amount
of personal computing power. If this technique works, the attacker would be able to
spend the same funds on the two branches.

To defend against such an attack, one needs to use a “sharp-threshold” rule that
makes it too hard to maintain the balance between the two branches. An example
of such a rule is selecting the longest chain on the Bitcoin network. Let us translate
this concept to the tangle when it is undergoing a splitting attack. Assume that
the first branch has total weight 537, and the second branch has total weight 528.
If an honest node selects the first branch with probability very close to 1/2, then
the attacker would probably be able to maintain the balance between the branches.
However, if an honest node selects the first branch with probability much larger
than 1/2, then the attacker would probably be unable to maintain the balance. The
inability to maintain balance between the two branches in the latter case is due to
the fact that after an inevitable random fluctuation, the network will quickly choose
one of the branches and abandon the other. In order to make the MCMC algorithm
behave this way, one has to choose a very rapidly decaying function f , and initiate the
random walk at a node with large depth so that it is highly probable that the walk
starts before the branch bifurcation. In this case, the random walk would choose the
“heavier” branch with high probability, even if the difference in cumulative weight
between the competing branches is small.

It is worth noting that the attacker’s task is very difficult because of network
synchronization issues: they may not be aware of a large number of recently issued
transactions33. Another effective method for defending against a splitting attack
would be for a sufficiently powerful entity to instantaneously publish a large number
of transactions on one branch, thus rapidly changing the power balance and making
it difficult for the attacker to deal with this change. If the attacker manages to main-
tain the split, the most recent transactions will only have around 50% confirmation
confidence (Section 1), and the branches will not grow. In this scenario, the “honest”
nodes may decide to start selectively giving their approval to the transactions that
occurred before the bifurcation, bypassing the opportunity to approve the conflicting
transactions on the split branches.

One may consider other versions of the tip selection algorithm. For example, if
a node sees two big subtangles, then it chooses the one with a larger sum of own

33The “real” cumulative weights may be quite different from what they believe.
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weights before performing the MCMC tip selection algorithm outlined above.
The following idea may be worth considering for future implementations. One

could make the transition probabilities defined in (13) depend on both Hx −Hy and
Hx in such a way that the next step of the Markov chain is almost deterministic
when the walker is deep in the tangle, yet becomes more random when the walker is
close to tips. This will help avoid entering the weaker branch while assuring sufficient
randomness when choosing the two tips to approve.

Conclusions:

1. We considered attack strategies for when an attacker tries to double-spend by
“outpacing” the system.

2. The “large weight” attack means that, in order to double-spend, the attacker
tries to give a very large weight to the double-spending transaction so that it
would outweigh the legitimate subtangle. This strategy would be a menace
to the network in the case where the allowed own weight is unbounded. As a
solution, we may limit the own weight of a transaction from above, or set it to
a constant value.

3. In the situation where the maximal own weight of a transaction is m, the best
attack strategy is to generate transactions with own weight m that reference the
double-spending transaction. When the input flow of “honest” transactions is
large enough compared to the attacker’s computational power, the probability
that the double-spending transaction has a larger cumulative weight can be
estimated using the formula (12) (see also examples below (12)).

4. The attack method of building a “parasite chain” makes approval strategies
based on height or score obsolete since the attacker’s sites will have higher
values for these metrics when compared to the legitimate tangle. On the other
hand, the MCMC tip selection algorithm described in Section 4.1 seems to
provide protection against this kind of attack.

5. The MCMC tip selection algorithm also offers protection against the lazy nodes
as a bonus.
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5 Resistance to quantum computations

It is known that a sufficiently large quantum computer34 could be very efficient for
handling problems that rely on trial and error to find a solution. The process of finding
a nonce in order to generate a Bitcoin block is a good example of such a problem. As
of today, one must check an average of 268 nonces to find a suitable hash that allows
a new block to be generated. It is known (see e.g. [15]) that a quantum computer
would need Θ(

√
N) operations to solve a problem that is analogous to the Bitcoin

puzzle stated above. This same problem would need Θ(N) operations on a classical
computer. Therefore, a quantum computer would be around

√
268 = 234 ≈ 17 billion

times more efficient at mining the Bitcoin blockchain than a classical computer. Also,
it is worth noting that if a blockchain does not increase its difficulty in response to
increased hashing power, there would be an increased rate of orphaned blocks.

For the same reason, a “large weight” attack would also be much more efficient
on a quantum computer. However, capping the weight from above, as suggested
in Section 4, would effectively prevent a quantum computer attack as well. This is
evident in iota because the number of nonces that one needs to check in order to find
a suitable hash for issuing a transaction is not unreasonably large. On average, it is
around 38. The gain of efficiency for an “ideal” quantum computer would therefore be
of order 34 = 81, which is already quite acceptable35. More importantly, the algorithm
used in the iota implementation is structured such that the time to find a nonce is
not much larger than the time needed for other tasks that are necessary to issue a
transaction. The latter part is much more resistant against quantum computing, and
therefore gives the tangle much more protection against an adversary with a quantum
computer when compared to the (Bitcoin) blockchain.
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